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ON BESSEL-RIESZ OPERATORS

Rubén A. CERUTTI()

ABSTRACT: We consider a class of conv olution operator denoted Wa(p obtained by convolution with

a generalized function expressible in terms of the Bessel function on first kind J. v with argument the

distribution (P iiO). We study some elementary properties of the operator Wa(p like the
semigroup property WaWB(p = WOHB(D; and @ +m) W@ = W% 2 for o0 > 2 where ([ +m?) is

the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator Wa(p may be
consider as a negative power of the Klein-Gordon operator

Key words: Bessel-Riesz potentials, fractional derivative, hypersingular integral

1. INTRODUCTION

This article deals with certain kind of potential operator defined as convolution
with the generalized function W, (P * 0, m,n) depending on a complex parameter o and

a real non negative one m.
The definitory formulae and several properties of the family

{w,(P+ iO,m,n)}a;oc € C have been introduced and studied by Trione (see [14])
specially the important followings two:
a) W, * WB =W B> O and B complex numbers, and

o

b) W_,, is a fundamental solution of the k-times iterated Klein-Gordon operator
Writing W, (P +i0,m,n) as an infinite linear combination of the ultrahyperbolic

Riesz kernel of different orders R, (PiiO)which is a causal (anticausal) elementary

solution of the ultrahyperbolic differential operator and taking into account its Fourier
transform it is possible to evaluate the Fourier transform of the kernel W, (P +i0,m, n) .

We prove the composition formula W% * WB(p = WOHB(p for a sufficiently good
function. The proof of this result is based on the composition formulae presented by
Trione in [14], but we also present a different way.

Other simple property studied is the one that establish the relationship between the

ultrahyperbolic Klein-Gordon operator and the W “ Bessel-Riesz operator.
Finally we obtain an expression that will be consider a fractional power of the
Klein-Gordon operator.

(1) Facultad de Ciencias Exactas y Nturales y Agrimensura — UNNE. Av. Libertad 5470 (3400)
Corrientes, Argentina. E-mail: rcerutti@exa.unne.edu.ar



18 FACENA, Vol. 23, 2007

II. PRELIMINARY DEFINITIONS AND RESULTS

Let t = (tl,tz, -, n) be a point of the n-dimensional space R". Let P = P(t)be the
quadratic non degenerate form in n variables

P=P)=t ++1, — 5 ==l (IL1)
where p+g=n

Gelfand (cf.[4]) introduced the (P #i0)" distributions as the following limit

(P+i0)" = lim gp +jelt|’ y (I1.2)
€ —
where € >0, t|2 =t +---+1> and A is a complex number.
Frequently we use an equivalent expression given by
(P£i0)" = P* +¢t™ p* (IL3)
where the generalized functions Pf‘ and P are defined by
P :{PK if P>0
0 ifP<0

and
A 0 ifP>0
) {|P|” if P<0
It is well known (cf.[4]) the Fourier transform of generalized functions associated with a

quadratic form and in the particular case of (P t iO)}L it results
Flpziop]-— [ e (Piofdi=Cp - (QFi0)7 (IL4)
(2m)> ™
where
¢ 2P T () + g)
(2m): T(=A)
and Q=0(y) =y +-F+ )5 = Vou == Virgs LY =D 4y (IL6)

where m is a positive real number; J, () the Bessel function of first kind

C(k,q) = (IL.5)

1) = Z )

pr-I—y-H)

and I'(z)is the gamma function
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We start by observing that the family {I7, (P * i0,m,n)}a;0c€ C'is a certain kind
of generalization of the family of retarded functions supported in the light cone

introduced by Marcel Riesz (cf.[7]) and by L. Schwartz (cf. [11]) and studied by Trione
(cf. [5]) defined by

otn

) .
m 2 .
S| \mu iftel’
W (u m) — 7220H5172 I“(%) 5 |:( Y:| + (117)
0 ifegl,
where u = —t; —---— ¢~ and T, is the cone

I, :{te R":t, >O,u>0}
/8 (u, m)that is an ordinary function if Reot = 7 is a distributional entire function on o
(cf [SD).
If in (I1.7) we replace J, , by its Taylor series, when m = 0 we obtain the
2

ultrahyperbolic kernel due by Nozali (cf [6]), given by

FOL—n
b, =—— (I1.8)
C,(a)
where
“n 2 2 2 2 Y5
ry :(t1+ +i, =1, ~~-—tp+q)2 t,>0;,p+tqg=n
and

ST )

C,(0)=—p (I1.9)
F( 2 p)r ()
By putting p = 1 in (I1.8) and (I1.9) we obtain inmediately
e
R =1H (@) = F (IL10)
0 ifrel,

where

H, (o) =2%" n‘”gr(%jr[—o‘ - ; - ”j

R, (u) is the hyperbolic kernel introduced by Riesz.
By putting n = 1 in R, (), and taking into account the Legendre’s duplication
formula of I'(z):

r(2z)=2%" nir(z)r(z ¥ %)
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we get
Iy =T if£>0 (IL11)
0 ifr<0
a-1
t at
Or, equivalently /, = F+ , where £,? 1is the distribution defined by
o
o | ife>o0
ty = ) (I1.12)
0 ifr<0

(cf. [4]). I is precisely the singular kernel of Riemann-Liouville studied by Riesz (cf.
[7]) and also by Trione [12].

Definition 1. Let @ be a sufficiently good function, we introduce the convolution type
operator W ¢

W =W, (P+i0,m,n)*q@ (IL13)
which is defined in Fourier transform by the following equality
3lrol= s, - lo] (IL.14)

Because the function W, (P +i0,m,n) is expressed in terms of Bessel functions
of first kind and that when m = 0 it reduces at the Marcel Riesz ultrahyperbolic kernel
R, (P T iO) (cf[14]) is why the operator (I1.13) is called the Bessel-Riesz potential.

From the definitory formula of J y (z), and putting by definition according Trione

(ctf. [14])
-3 1 (o
2| &y =2 .15
(kj M D (2”] (L1

n
2(x+2y TEEF(OH%{)
2
n—o.—2y
F 2

it results that the generalized function W, (P * 0, m,n) may be expressed as an infinite

and Hn((x + 2y) =

linear combination of the ultrahyperbolic causal (anticausal) Riesz kernel

o-n+2y

) oo _ o iO) 3
W (Pt i0mn)= 3 % | (EEO) .16
olF£10,m1) Z( jm H,(a+2y) —

y=0
This formula allow us to write the Fourier transform of W, as
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3 “w]=i£_j) (o7 i0) "> 'Sl (IL17)

y=0

Taking into account (I.13) and (I1.16) the operator W “@ has the form

o(x — t)dt}

(IL18)

o— n+2y im(o—n+2y) o— n+2Y

W= Z( ]”U Pt gx-ndite * [ |P

where K, and K _denote the cones
K, ={te R": P(t)2 0},
K ={te R": P(r)<0}.
The integral in (IL.18) converges if o0 >n—2Y and in the case o0 < n—2y it

admits an analytical continuation respecto to o (cf. [10]).

III. THE GENERALIZED BESSEL-RIESZ DERIVATIVE

—1
To obtain an inverse operator of W, which is indicated by (W(X) , such that

-1
f =W itresults that ¢ = ( a) f, we introduce an operator (W ( ) that is a linear
combination of hypersingular integrals of orders o0 — 2y, vy =0,1,.. [ ] plus an integral

operator

ey g[_] oy 3 H sy
= —_— m -7~ .
24 Ja o) % o) i)
where

(122t £ ho) = [ (P+z£|t| T (I11.2)
where (Al, f kx) = Z:: O(k](—l)k f(x—kt)is the difference of order [ of the function f

at the point x with interval #. The operator Tloé ¥ 2" shall be defined as “the hypersingular

integral in differences” and it is a causal analogue of the integral definied by Samko (cf.
[10]) for the elliptic case, and by Rubin ([8]) for the Bessel potentials and by us (cf. [1])
for causal Bessel potentials and the same for causal Riesz potentials (cf. [2] and [3]). And
its Fourier transform is

3[Tzfi,}2 f ](&) =d,, (o 2Y)(Q T ielef FSU]@) (I1.3)
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where the constant d,, (OL - 2y) is given by
dn,l (O(‘ - 2Y) =

n%He’%qA, (oe—2y) .

Z - v if =2y #246..
2 (T fen 7 (- 2) -
()Mt e T g . _
S (PN Y= —aAl(a ~2y) ifo-2y=246..

This operator is such that it Fourier transform is.

SESRGIE gm (0-i0f "3ls1+

y=0

%@m o-iof YSW?(Y] (0 -i0)*3[]

and taking into account that

3w, (P+i0,m,n)] i[

(IIL.5)

le
\_/
(Q
+
~,

S
N—"
8]

it result

[ 7)) z[z]mzv@—io)%-v -3l /]
y=0 Y

Analogously to the Riesz derivative and causal Riesz derivative (cf. [9], [3] and

[2]) and the causal Bessel derivative (cf. [1]) we define the generalized Bessel-Riesz

derivative of order o of a function f€ S when o #1,3,5, ...by

slperle = ZU 2(0Fi0) 7 S[]E) (IIL6)

IV. INVERSION OF BESSEL-RIESZ POTENTIALS DEFINED ON §' (R" )

In order to extend the inversion to Bessel-Riesz potentials defined on temperate
distributions we need the relation between the derivative of certain order B and the
Bessel-Riesz potential of order o0 of a function ¢ belonging to the space S. Let the
operator DBW(X(p. To obtain an expression of this last operation we start by evaluate its
Fourier transform.
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y>0\ Y
2[ j -0/ 5[~ %rrigioy*# Sol-
TN e

z{] 00+ slg]=

From (II1.5) making the change ot — o — 3, we obtain
37, * ol= 3o
And by the uniqueness of the Fourier transform
DPw e =w* P
Thus, we have proved the following:

Theorem 2. Let o and B be real positive numbers, 3 < ot. Then is valid the following

result
DPweo=w* P
Corollary: As a particular case when ot =3, DBWa(p =Q.
In fact: From the last formulae, putting 3 = o
DWeo=W*p=W'p=8*¢p=0¢.

Now we can extend the Bessel-Riesz operator to temperate distributions.

Definition 3. Let 7 be a distribution belonging to S', and o > 0. Then Bessel-Riesz

potential W°T is definied by the relation:

(W“T,cp)z (T, w “cp). (IV.1)

It is clear that (IV.1) defines a functional in S'.
For temperates distributions the following result holds.

Theorem 4. Let 7, and T, be temperate distributions and o > 0. Then the two following

assertions are equivalent
1. T, =W°T,, and
— 11 o
2.1, = llgng T
Proof. We begin by proving 1) = 2).
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We have
1
tim (D2T,0)= lim (T3, D)= lim (#°T,, D)= lim (1, WD) = (73,¢)

(IV.2)

The identity (1) results from Corollary of Theorem 2.
Now we shall prove 2) = 1).

If 7, = liQODgTI , we have

773.0)= (1. %)= lim (D27, W)= lim (1., DIW"9) = (1,,0) V.3)
From (IV.2) and (IV.3) the theorem follows.

1
V. THE INVERSE OPERATOR (WO‘) ,FOR 00 =2k ,k=1,2,...AS LINEAR COMBINATION
OF CAUSAL RIESZ DERIVATIVES

We begin by consider the binomial expansion of the distribution

(m? +P+zo)k Z( J( )k (Ptioy (V.1)

and remembering that
(m2 +Pii0)( =(m2 +P—i0yc =(m2 +Py(,and
(Pxi0) =(P—-i0)f =(P)* (cf. [?]). (V.2)

(m*+ P) = g(ﬂ(mz)k” P’ (V.3)

Taking into account the inversion theorem for Bessel-Riesz potentials we have

result that

S r |-l =S+ 0=l +of ST vy
Putting (V.4) in (V.3)
S )" r |- ij(k.j(mz)k_’ (0-i0y'3l/] V.5)
The Fourier transform of the c;:;al] Riesz derivative is given by
sp*r]= (0 -i0)3lr] . 120 (V.6)
then
) ]34 sl wa
=

and it results
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)" s = é(i](mzy_jS[szf | (V.8)

Moreover, taking into account that for causal Riesz derivative of order 2j, j a non
negative integer we have

3lp¥r|=3107 . 121 (V.9)
where € denotes the ultrahyperbolic differential operator

PP 9

ol ol o, .,

Then from (V.8) we arrive at
k .
()" - Z(k'](’"zy“’ 0's (V.10
j=0\J

This last formula is analogue to the following due to Samko obtained for the elliptic
Riesz potential (cf. [9])

(5] = Zgl(%.](AYf (V.11)

j=0\J

-l .
where (B“) is the inverse operator of the Bessel operator of order o. and A denote the
Laplacian operator.

VI. RELATIONS BETWEEN THE BESSEL-RIESZ OPERATORS AND THE KLEIN-GORDON
OPERATOR

If K'={] + m’} designates the ultrahyperbolic Klein-Gordon differential
operator iterated / times, it was proved (cf. [14]) that IV, (P T io,m,n) is an elementary
solution, i.e.

{0+ m*YW,,(P+io,mn)=38 (VL1)

From this fact it may be proved the following
Theorem 5. Let o be a real number, 0 =>2/; [ =12,... Let K "be the Klein-Gordon
operator iterated / times and let W *@be the Bessel-Riesz operator of order o, and @; then

KI{WO‘(p}= w2,
Proof. By definition (II.13) we have
we e =w, ,,(P+io,m,n)*@ (V1.2)
From (I1.13), (IV.1) we obtain
W=, k=W, W xo=W,*K'o=W,{K'¢}  (VI3)
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and analogously

we e =K' {W“(p} (VL4)
Then, from (VI1.3) and (V1.4) it results
k{weel=mwee (VL5)

Theorem 6. The same hypothesis of Theorem 5. Then
WOLKl(p — W()L—Zl(p
Proof. The proof is analogue to the proof of Theorem 5.

In this paragraph we obtain an expression that will be consider a negative
fractional power of the Klein-Gordon operator. The fractional power of a differential
operator here is interpreted in the same way that Samko (cf. [10])

The Klein-Gordon operator is given by

2 2 2 5
@+m)= {az "+a_2_aT ____ _82 +m2}
J atP al‘p+1 atp+q

From the fact that the application of the operator is reduce by Fourier transform to
the following form

S (@ + )91 = [m* + P(1))3lo] (VL6)

i.e.: it is reduced to the multiplication by m* + P, we introduce the fractional power of
the Klein-Gordon operator as an operator which are defined in terms of Fourier

transforms by means of multiplication by a fractional power of the (m2 + P) generalized

function.
From (VI.6) and (II.4) we may introduce an fractional power of the Klein-Gordon
operator as

[~ +m)]%p= S‘l[(m2 +0F io)“}S[cp]
Taking into account that the fractional power of the D’ Alembertain is given by

[]%=3" [(Q Fio) JS[(p] (cf. [10])

the formulae (II.17) may be written

shral= 3 ¥ o0y sl

v=0
i( )ZYS 0 o)

=3[ +m) " ¢] (VL7.)
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Then by the uniqueness of the Fourier transform we get

wlo=0+m) 2@ (VL)

in S'sense.
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