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ON BESSEL-RIESZ OPERATORS 
 

Rubén A. CERUTTI(1) 
 

ABSTRACT: We consider a class of conv olution operator denoted ϕαW  obtained by convolution with 

a generalized function expressible in terms of the Bessel function on first kind γJ  with argument the 

distribution ( )0iP ± . We study some elementary properties of the operator ϕαW  like the 

semigroup property ϕ=ϕ β+αβα WWW ; and (�  +m
2
)

2−αα =ϕ WW for α > 2 where (�  +m2) is 

the Klein-Gordon ultrahyperbolic operator. Moreover we prove that the operator ϕαW  may be 

consider as a negative power of the Klein-Gordon operator 

 
Key words: Bessel-Riesz potentials, fractional derivative, hypersingular integral 
 
 

I. INTRODUCTION 
 

 This article deals with certain kind of potential operator defined as convolution 

with the generalized function ( )nmiPW ,,0±α depending on a complex parameter α and 

a real non negative one m. 
 The definitory formulae and several properties of the family 

( ){ } CnmiPW ∈α± αα ;,,0 have been introduced and studied by Trione (see [14]) 

specially the important followings two: 

a) β+αβα =∗ WWW , α and β complex numbers, and 

b) kW 2− is a fundamental solution of the k-times iterated Klein-Gordon operator 

 Writing ( )nmiPW ,,0±α  as an infinite linear combination of the ultrahyperbolic 

Riesz kernel of different orders ( )0iPR ±α which is a causal (anticausal) elementary 

solution of the ultrahyperbolic differential operator and taking into account its Fourier 

transform it is possible to evaluate the Fourier transform of the kernel ( )nmiPW ,,0±α . 

 We prove the composition formula ϕ=ϕ∗ β+αβα WWW  for a sufficiently good 

function. The proof of this result is based on the composition formulae presented by 
Trione in [14], but we also present a different way. 
 Other simple property studied is the one that establish the relationship between the 

ultrahyperbolic Klein-Gordon operator and the 
αW Bessel-Riesz operator. 

 Finally we obtain an expression that will be consider a fractional power of the 
Klein-Gordon operator. 
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(1) Facultad de Ciencias Exactas y Nturales y Agrimensura – UNNE. Av. Libertad 5470 (3400) 
Corrientes, Argentina. E-mail: rcerutti@exa.unne.edu.ar 

 



FACENA, Vol. 23, 2007 

 
18

II. PRELIMINARY DEFINITIONS AND RESULTS 
 

Let ( )ntttt ,,, 21 L=  be a point of the n-dimensional space 
nR . Let )(tPP = be the 

quadratic non degenerate form in n variables 
22

1
22

1)( qppp tttttPP ++ −−−++== LL     (II.1) 

where nqp =+  

 Gelfand (cf.[4]) introduced the ( )λ± 0iP distributions as the following limit 

( ) =± λ0iP ( )
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where ,0>ε  
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 Frequently we use an equivalent expression given by 
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It is well known (cf.[4]) the Fourier transform of generalized functions associated with a 

quadratic form and in the particular case of ( )λ± 0iP it results 
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where m is a positive real number; )(zJ γ the Bessel function of first kind 
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and )(zΓ is the gamma function 
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 We start by observing that the family ( ){ } CnmiPW ∈α± αα ;,,0 is a certain kind 

of generalization of the family of retarded functions supported in the light cone 
introduced by Marcel Riesz (cf.[7]) and by L. Schwartz (cf. [11]) and studied by Trione 
(cf. [5]) defined by 
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where 
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2
2
1 ntttu −−−= L and +Γ is the cone 

    { }0,0: 1 >>∈=Γ+ utRt n
 

( )muW ,α that is an ordinary function if Reα ≥ n is a distributional entire function on α 

(cf [5]). 

 If in (II.7) we replace 
2
nJ −α by its Taylor series, when m = 0 we obtain the 

ultrahyperbolic kernel due by Nozali (cf [6]), given by 
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By putting p = 1 in (II.8) and (II.9) we obtain inmediately 
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we get 
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Or, equivalently 
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(cf. [4]). αI is precisely the singular kernel of Riemann-Liouville studied by Riesz (cf. 

[7]) and also by Trione [12]. 

Definition 1. Let ϕ be a sufficiently good function, we introduce the convolution type 

operator ϕαW  

    ( ) ϕ∗±=ϕ α
α nmiPWW ,,0     (II.13) 

which is defined in Fourier transform by the following equality 

    [ ] [ ] [ ]ϕℑ⋅ℑ=ϕℑ α
α WW      (II.14) 

 Because the function ( )nmiPW ,,0±α  is expressed in terms of Bessel functions 

of first kind and that when m = 0 it reduces at the Marcel Riesz ultrahyperbolic kernel 

( )0iPR ±α  (cf[14]) is why the operator (II.13) is called the Bessel-Riesz potential. 

 From the definitory formula of )(zJ γ , and putting by definition according Trione 

(cf. [14]) 
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it results that the generalized function ( )nmiPW ,,0±α  may be expressed as an infinite 

linear combination of the ultrahyperbolic causal (anticausal) Riesz kernel 
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 This formula allow us to write the Fourier transform of αW as 
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 Taking into account (II.13) and (II.16) the operator ϕαW  has the form 
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where +K  and −K denote the cones 

   { }0)(: ≥∈=+ tPRtK n
, 

   { }0)(: ≤∈=− tPRtK n
. 

 The integral in (II.18) converges if γ−>α 2n  and in the case γ−≤α 2n  it 

admits an analytical continuation respecto to α (cf. [10]). 
 
 

III. THE GENERALIZED BESSEL-RIESZ DERIVATIVE 
 

 To obtain an inverse operator of 
αW , which is indicated by ( ) 1−αW , such that 

ϕ= αWf  it results that ( ) fW
1−α=ϕ , we introduce an operator ( ) 1−αW that is a linear 

combination of hypersingular integrals of orders γ−α 2 , γ = 0,1,…, [ ]2
α  plus an integral 
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integral in differences” and it is a causal analogue of the integral definied by Samko (cf. 
[10]) for the elliptic case, and by Rubin ([8]) for the Bessel potentials and by us (cf. [1]) 
for causal Bessel potentials and the same for causal Riesz potentials (cf. [2] and [3]). And 
its Fourier transform is 

  [ ] ( )( ) [ ] )(2)( 2
2

2
,

2
,, ξℑξεγ−α=ξℑ

γ−α
γ−α

γε fiQdfT lnl m   (III.3) 



FACENA, Vol. 23, 2007 

 
22

where the constant ( )γ−α 2,lnd is given by 
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This operator is such that it Fourier transform is. 
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and taking into account that 
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it result 
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 Analogously to the Riesz derivative and causal Riesz derivative (cf. [9], [3] and 
[2]) and the causal Bessel derivative (cf. [1]) we define the generalized Bessel-Riesz 

derivative of order α of a function f ∈ S when ,5,3,1≠α …by 
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IV. INVERSION OF BESSEL-RIESZ POTENTIALS DEFINED ON ( )nRS ' . 

 
 In order to extend the inversion to Bessel-Riesz potentials defined on temperate 

distributions we need the relation between the derivative of certain order β and the 

Bessel-Riesz potential of order α of a function ϕ belonging to the space S. Let the 

operator ϕαβWD . To obtain an expression of this last operation we start by evaluate its 

Fourier transform. 
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 From (III.5) making the change β−α→α , we obtain 

[ ] [ ]ϕℑ=ϕ∗ℑ β−α
β−α WW  

 And by the uniqueness of the Fourier transform 

ϕ=ϕ β−ααβ WWD  

 Thus, we have proved the following: 
 

Theorem 2. Let α and β be real positive numbers, α≤β . Then is valid the following 

result 

ϕ=ϕ β−ααβ WWD  

Corollary: As a particular case when β=α , ϕ=ϕαβWD . 

In fact: From the last formulae, putting α=β  

ϕ=ϕ∗δ=ϕ=ϕ=ϕ α−ααα 0WWWD . 

Now we can extend the Bessel-Riesz operator to temperate distributions. 

Definition 3. Let T be a distribution belonging to 'S , and 0>α . Then Bessel-Riesz 

potential TW α
is definied by the relation: 

     ( ) ( )ϕ=ϕ αα WTTW ,, .    (IV.1) 

It is clear that (IV.1) defines a functional in 'S . 

For temperates distributions the following result holds. 
 

Theorem 4. Let T1 and T2 be temperate distributions and 0>α . Then the two following 

assertions are equivalent 

1. 21 TWT α= , and 

2. =2T 0 1  lim
→ε

α
ε TD  

Proof. We begin by proving 1)⇒ 2). 
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 We have 

( )
0 1,  lim

→ε
α
ε =ϕTD ( )

0 1,  lim
→ε

α
ε =ϕDT ( )

0 2,  lim
→ε

α
ε

α =ϕDTW ( )
0 2,  lim

→ε
α
ε

α ϕDWT
)1(
= ( )ϕ,2T  

            (IV.2) 
The identity (1) results from Corollary of Theorem 2. 
 Now we shall prove 2) ⇒  1). 
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α
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From (IV.2) and (IV.3) the theorem follows. 
 

V. THE INVERSE OPERATOR ( ) 1−αW , FOR k2=α , K = 1,2,…AS LINEAR COMBINATION 

OF CAUSAL RIESZ DERIVATIVES 
 
 We begin by consider the binomial expansion of the distribution 
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and remembering that 
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Taking into account the inversion theorem for Bessel-Riesz potentials we have 
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Putting (V.4) in (V.3) 
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The Fourier transform of the causal Riesz derivative is given by 
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and it results 
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Moreover, taking into account that for causal Riesz derivative of order 2j, j a non 
negative integer we have 
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This last formula is analogue to the following due to Samko obtained for the elliptic 
Riesz potential (cf. [9]) 
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where ( ) 1−αB is the inverse operator of the Bessel operator of order α and Δ denote the 

Laplacian operator. 
 
 

VI. RELATIONS BETWEEN THE BESSEL-RIESZ OPERATORS AND THE KLEIN-GORDON 

OPERATOR 
 

 If =lK {�  + m2}l designates the ultrahyperbolic Klein-Gordon differential 

operator iterated l times, it was proved (cf. [14]) that ( )nmioPW l ,,2 ±  is an elementary 

solution, i.e. 

   {�  + m2}l ( ) δ=± nmioPW l ,,2     (VI.1) 

 From this fact it may be proved the following 

Theorem 5. Let α be a real number, l2≥α ; ,2,1=l … Let 
lK be the Klein-Gordon 

operator iterated l times and let ϕαW be the Bessel-Riesz operator of order α and ϕ; then 

    { } ϕ=ϕ −αα ll WWK 2
. 

Proof. By definition (II.13) we have 

   ( ) ϕ∗±=ϕ −α
−α nmioPWW l
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From (II.13), (IV.1) we obtain 
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and analogously 

     { }ϕ=ϕ α−α WKW ll2
    (VI.4) 

Then, from (VI.3) and (VI.4) it results 

    { } ϕ=ϕ −αα ll WWK 2
     (VI.5) 

 
 
 

Theorem 6. The same hypothesis of Theorem 5. Then 

    ϕ=ϕ −αα ll WKW 2
 

Proof. The proof is analogue to the proof of Theorem 5.  
 
 In this paragraph we obtain an expression that will be consider a negative 
fractional power of the Klein-Gordon operator. The fractional power of a differential 
operator here is interpreted in the same way that Samko (cf. [10]) 
 The Klein-Gordon operator is given by 
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 From the fact that the application of the operator is reduce by Fourier transform to 
the following form 

   ℑ [−(�  + m
2
)ϕ] ( ) [ ]ϕℑ+= )(2 tPm     (VI.6) 

i.e.: it is reduced to the multiplication by Pm +2
, we introduce the fractional power of 

the Klein-Gordon operator as an operator which are defined in terms of Fourier 

transforms by means of multiplication by a fractional power of the ( )Pm +2
 generalized 

function. 
 From (VI.6) and (II.4) we may introduce an fractional power of the Klein-Gordon 
operator as 

   [−(�  + m
2
)]
αϕ ( ) [ ]ϕℑ⎥⎦

⎤
⎢⎣
⎡ +ℑ=

α− ioQm m21
 

Taking into account that the fractional power of the D’Alembertain is given by 

   [−�]
αϕ ( )[ ] [ ]ϕℑℑ= α− ioQ m1

 (cf. [10]) 

the formulae (II.17) may be written 
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    ℑ= [(�  + m
2
) ϕ

α− 2 ]     (VI.7.) 
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Then by the uniqueness of the Fourier transform we get 

    =ϕαW (�  + m
2
) ϕ

α− 2      (VI.8) 

in 'S sense. 
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