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Resumen 
La producción in vitro (PIV) de embriones bovinos se ha consolidado como la biotecnología reproductiva 
más difundida a nivel global. Dentro de este sistema, la maduración in vitro (MIV) de ovocitos constituye 
un punto crítico, ya que durante este proceso ocurren transformaciones nucleares, citoplasmáticas y 
del cúmulo que determinan la competencia para la fecundación y el desarrollo embrionario. La MIV es 
altamente sensible a factores ambientales como el tiempo de cultivo, la temperatura, el pH, la concentración 
de oxígeno, la exposición a la luz, los cuales pueden inducir estrés oxidativo y comprometer la viabilidad 
celular. La sobreproducción de especies reactivas de oxígeno daña estructuras esenciales como el ADN, 
las proteínas y las mitocondrias, afectando la maduración y el posterior desarrollo del embrión. Estudios 
recientes evidencian que el cultivo prolongado y las fluctuaciones térmicas generan una memoria molecular 
que reduce la competencia ovocitaria, aun en condiciones posteriores normales. Frente a estas limitaciones, 
se han propuesto diversas estrategias. La suplementación con antioxidantes como cisteamina, L-cisteína, 
melatonina, epigalocatequina, resveratrol, vitamina C y ácidos grasos omega-3 ha mostrado efectos positivos 
en la maduración y en la reducción del daño oxidativo, aunque con resultados variables. Más recientemente, 
el ácido fólico ha cobrado relevancia por sus efectos antioxidantes y epigenéticos, al inhibir la ferroptosis 
y mejorar la competencia ovocitaria. En conclusión, la optimización de la MIV requiere integrar el control 
de factores ambientales con estrategias antioxidantes y moleculares adaptadas a cada laboratorio, a fin de 
preservar la calidad ovocitaria y maximizar el potencial de desarrollo embrionario.
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Oxidative stress during in vitro maturation 
of bovine oocytes: a review

Abstract. In vitro production (IVP) of bovine embryos has become the most widely used reproductive 
biotechnologies worldwide. Within this system, in vitro maturation (IVM) of oocytes is a critical step, as 
it involves nuclear, cytoplasmic, and cumulus cell transformations that determine oocyte competence for 
fertilization and subsequent embryonic development. IVM is highly sensitive to environmental factors such 
as temperature, pH, oxygen concentration, light exposure, and culture duration, which may induce oxidative 
stress and compromise cell viability. Excessive production of reactive oxygen species (ROS) damages 
key cellular structures, including DNA, proteins, and mitochondria, thereby impairing oocyte maturation 
and embryonic development. Recent studies indicate that prolonged culture and thermal fluctuations can 
generate a “molecular memory” that reduces oocyte competence, even under otherwise normal conditions. 
Several strategies have been proposed to overcome these limitations. Supplementation with antioxidants 
such as cysteamine, L-cysteine, melatonin, epigallocatechin, resveratrol, vitamin C, and omega-3 fatty 
acids has shown beneficial effects on oocyte maturation and the reduction of oxidative damage, although 
with variable outcomes. More recently, folic acid has gained attention due to its antioxidant and epigenetic 
properties, particularly through the inhibition of ferroptosis and the enhancement of oocyte competence. In 
conclusion, optimizing IVM requires integrating strict control of environmental conditions with targeted 
antioxidant and molecular strategies tailored to each laboratory to preserve oocyte quality and maximize 
embryonic developmental potential.
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INTRODUCCIÓN 

La producción in vitro (PIV) de embriones bovinos 
ha transformado la reproducción animal, consolidándose 
como la técnica predominante a nivel global. Según el 
último reporte de la International Embryo Technology 
Society (Viana 2024), en 2023 se produjeron 1,87 
millones de embriones bovinos in vitro, superando en 
cinco veces a los derivados de técnicas de producción de 
embriones in vivo (371.138 embriones). Este crecimiento 
(del 15,8% respecto a 2022) refleja su adopción masiva 
en regiones como Sudamérica (643.004 embriones PIV) 
y Norteamérica (1,09 millones), donde la eficiencia 
reproductiva es prioritaria (Viana 2024). Sin embargo, este 
éxito contrasta con desafíos persistentes: sólo el 42,1% de 
los embriones PIV fueron transferidos (vs. 58,9% de los 
in vivo), y la tasa de gestación sigue siendo inferior a la 
deseada (Viana 2024). 

Estas limitaciones, en parte se deben a que la técnica 
de PIV de embriones es sensible a diferentes factores 
inherentes tanto a la calidad de las gametas como a los pasos 
que la integran (Bahrami y Cottee 2022). Sin lugar a dudas, 
la maduración in vitro (MIV) es un punto crítico dentro 
del sistema y es crucial para el éxito de la biotecnología 
(Adona et al. 2016, Lee et al. 2016, Hatırnaz et al. 2018, 
Zhang et al. 2018, Richani et al. 2021) ya que durante esta 
etapa los ovocitos alcanzan la competencia para lograr una 
correcta fecundación y un desarrollo embrionario exitoso 
(Hardy et al. 2000, Hussein et al. 2006, Rimon-Dahari et al. 
2016, Conti y Franciosi 2018, Lodde et al. 2021).

En este contexto, mejorar la eficiencia de la MIV en 
los mamíferos continúa siendo un desafío para la industria 
ganadera (Hardy et al. 2000, Lonergan y Fair 2016). Si 
bien se ha avanzado en el desarrollo de diversos protocolos 
de MIV y pre-MIV, factores críticos como condiciones 
subóptimas pueden generar alteraciones en el ovocito que 
comprometan el desarrollo embrionario posterior.

El objetivo de esta revisión es analizar el impacto de 
las condiciones de MIV sobre la competencia ovocitaria 
para producir blastocistos, así como describir la importante 
función de las sustancias antioxidantes agregadas a los 
medios de maduración con énfasis en estudios realizados 
en bovinos.

Eventos celulares durante la MIV. 

Durante la vida fetal los ovocitos ingresan en la 
meiosis y se detienen en la fase de diploteno de la profase I, 
conocida como etapa de vesícula germinal hasta el reinicio 
durante la maduración (Fair et al. 1995).

En condiciones in vivo, la meiosis se reanuda luego del 
pico preovulatorio de la hormona luteinizante (LH). Esto 
induce la caída de la concentración adenosín monofosfato 
cíclico, activa la fosforilación de proteínas específicas 
como el factor promotor de la mitosis que reinician el 
ciclo celular (Dekel 2005, Rimon-Dahari et al. 2016, 
Taugourdeau et al. 2019). Por otra parte, en condiciones in 
vitro esto se logra mediante la suplementación del medio de 
MIV con la hormona folículo-estimulante (FSH) (Xiao et 
al. 2014, Richani y Gilchrist 2018). La FSH in vitro parece 
actuar tanto para su propia función como para la de la LH 
in vivo (Sirard et al. 2007). 

Durante el proceso de maduración se evidencian 
cambios en tres estructuras principales, el núcleo, el 
citoplasma y el cumulus. En el núcleo se observa la 
evolución desde la Profase I hasta la Metafase II, en el cual 
el contenido genético se reduce a haploide (1n) (Cooper 
2000, Voronina y Wessel 2003) debido a la extrusión del 
primer corpúsculo polar (1° CP) (Cavalera et al. 2019).

Durante la maduración citoplasmática ocurren la 
transcripción de ARN, síntesis de proteínas, reorganización 
de diversos orgánulos celulares como la dispersión de 
las mitocondrias -fundamentales para el abastecimiento 
energético durante este proceso-, la fragmentación del 
aparato de Golgi y del retículo endoplásmico, y migración 
de los gránulos corticales (Watson 2007, Mao et al. 2014, 
Morimoto et al. 2017). Dentro de las proteínas sintetizadas 
en este periodo se encuentran aquellas involucradas en 
el ciclo celular que aseguran la correcta finalización de 
la meiosis y primeros ciclos de mitosis durante la vida 
embrionaria temprana (Watson 2007). La calidad de esta 
maduración citoplasmática condiciona el potencial de 
desarrollo del embrión (Grøndahl 2008, Lodde et al. 2021). 

Finalmente, en las células del cumulus se observa 
la desconexión de las uniones intercelulares y de las Gap 
Junctions, acompañada de la liberación de ácido hialurónico 
al exterior (Gilchrist et al. 2004, Uyar et al. 2013, Abedini 
Najafabadi 2015). Este cambio es denominado, expansión 
del cumulus y facilita el paso de los espermatozoides 
aumentando la probabilidad de fertilización (Ploutarchou 
et al. 2015, Kahraman et al. 2018). 

Consecuencias de alteraciones durante la MIV en el 
desarrollo embrionario. 

El potencial de desarrollo embrionario depende en 
gran medida de la calidad y el estado funcional del ovocito 
(Aguilar-Piña 2012, Lonergan y Fair 2016). Durante la 
MIV, diversos factores externos pueden comprometer 
la competencia ovocitaria y, en consecuencia, afectar 
negativamente la fecundación y el desarrollo embrionario. 
Entre ellos, se destacan la temperatura, el tiempo de 
transporte, la concentración de oxígeno, la exposición a la 
luz, el tipo de manipulación ovocitaria y otros parámetros 
fisicoquímicos del entorno in vitro (Hanada et al. 1986, First 
y Parrish 1987). Estos factores pueden inducir alteraciones 
en el metabolismo celular que comprometen la viabilidad 
del ovocito (Lin y Wang 2021, Keane y Ealy 2024). 

En los apartados siguientes se desarrollan de 
forma específica los principales factores que afectan la 
maduración in vitro y se discuten sus consecuencias sobre 
la competencia ovocitaria y el desarrollo embrionario 
posterior.

Tiempo de maduración. Un tiempo inadecuado 
de maduración puede permitir la formación anormal de 
la cromatina (Dominko y First 1997), el envejecimiento 
del ovocito (Hunter y Greve 1997) y un desarrollo 
comprometido del mismo (Park et al. 2005). Diversos 
estudios describen una variación amplia en el tiempo 
requerido para completar la meiosis in vitro, variando 
desde las 16 hasta las 32 h (Chauhan y Anand 1991, Crozet 
et al. 1995, Taru et al. 1996, Landínez Aponte et al. 2010). 
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No obstante, se ha comprobado que la MIV de ovocitos 
bovinos se completa de manera óptima en un intervalo 
cercano a las 22–24 h (Gilchrist et al. 2016, Sugimura et al. 
2017, Soares et al. 2020). 

Estudios más recientes confirman que periodos 
prolongados de MIV inducen alteraciones asociadas 
al envejecimiento ovocitario. Koyama et al. (2014) 
observaron que, aunque las tasas de fertilización fueron 
similares, ovocitos cultivados 30–34 h mostraron menor 
desarrollo a blastocisto y mayores cambios bioenergéticos 
vinculados al estrés oxidativo. De forma complementaria, 
Soares et al. (2020) reportaron que tras 30 h de MIV los 
ovocitos presentan incremento de peróxido de hidrógeno y 
alteraciones mitocondriales comparables a las observadas 
en el envejecimiento in vivo, lo que confirma que la duración 
del cultivo es un factor crítico para preservar la calidad 
ovocitaria y la competencia de desarrollo embrionario.

Temperatura. En los sistemas de PIV, la temperatura 
constituye un factor crítico tanto antes como durante 
la MIV. En el caso de ovarios bovinos provenientes de 
matadero, el transporte hasta el laboratorio representa 
una etapa particularmente sensible a la temperatura de 
almacenamiento, lo que condiciona la viabilidad folicular 
y la competencia de los ovocitos (Barberino et al. 2019). 
Se ha demostrado que el almacenamiento de ovarios a 
temperaturas moderadas o reducidas puede atenuar el estrés 
isquémico y metabólico asociado a la extracción. Wang et 
al. (2011) observaron que el transporte ovárico durante 3–4 
h a 15 °C preservó una mayor proporción de ovocitos de 
buena calidad, aumentó las tasas de maduración a metafase 
II y redujo los índices de apoptosis, en comparación 
con temperaturas más elevadas (25–35 °C). De forma 
complementaria, Matsushita et al. (2004) demostraron que 
el almacenamiento de ovarios bovinos a 10 °C durante 24 
h no comprometió la maduración ovocitaria ni el desarrollo 
embrionario hasta blastocisto tras fertilización in vitro.

En contextos de aspiración folicular (OPU), los 
ovocitos recuperados deben ser mantenidos bajo condiciones 
térmicas controladas hasta el inicio de la MIV. Pascottini 
et al. (2018) reportaron que ovocitos bovinos inmaduros 
pueden mantenerse en un medio comercial a temperatura 
ambiente (22–25 °C) hasta 10 h sin comprometer las 
tasas de maduración ni la producción de blastocistos. En 
contraste, la retención a 38,5 °C durante 6 h, y a 4 °C 
durante 10 h o la prolongación del tiempo de retención a 
14 h a temperatura ambiente redujeron significativamente 
las tasas de maduración y/o de desarrollo embrionario. El 
control estricto de la temperatura antes de la MIV, tanto 
para transporte ovárico como de ovocitos tras OPU, es 
fundamental para preservar la calidad ovocitaria.

En continuidad con lo anterior, la temperatura 
durante el proceso de MIV de ovocitos bovinos actúa 
como un factor determinante de su competencia, con 
efectos críticos que se manifiestan en múltiples niveles 
celulares. Estudios claves demostraron que incluso 
fluctuaciones aparentemente menores (del orden de 1–2 
°C por encima o por debajo del rango óptimo fisiológico 
38,5–37 °C) alteran irreversiblemente procesos claves: 
desde la despolimerización de microtúbulos del huso 
meiótico (Aman y Parks 1994, Payton et al. 2004) hasta 

la redistribución anormal de orgánulos citoplasmáticos 
como gránulos corticales y mitocondrias (Edwards et al. 
2005, Sakatani 2017, Naranjo-Gómez et al. 2021). Estas 
alteraciones estructurales se traducen en fallos funcionales, 
evidenciados por tasas reducidas de fecundación y un 
descenso del 30-50% en la producción de blastocistos 
cuando los ovocitos se exponen a ≥41 °C durante 6-12 
horas (Silva et al. 2013, Camargo et al. 2019, Stamperna 
et al. 2020). Curiosamente, el daño térmico persiste incluso 
cuando el desarrollo embrionario posterior ocurre en 
condiciones normales, sugiriendo que la MIV establece 
una “memoria molecular” vulnerable al estrés (Hansen 
2007, Camargo et al. 2019, Stamperna et al. 2021).

A nivel molecular, el calor afecta simultáneamente a 
ovocitos y células del cúmulo. Por un lado, induce estrés 
oxidativo mediante la acumulación de especies reactivas 
del oxígeno (ROS) que dañan el ADN y activan vías 
apoptóticas (Roth y Hansen 2004, Ju et al. 2005); por 
otro, altera la expresión génica en ambos tipos celulares, 
comprometiendo su comunicación metabólica (Luciano et 
al. 2005, Rispoli et al. 2013, Campen et al. 2018). 

Ticianelli et al. (2017) observaron que la exposición 
de los complejos ovocito-cumulus (COCs) al calor 
provoca fragmentación del ADN en las células del 
cumulus. Latorraca et al. (2020) reportaron que uno de los 
mecanismos celulares activados por el estrés térmico en los 
ovocitos es la autofagia. Por su parte, Campen et al. (2018) 
encontraron que la comunicación de las Gap Junctions, se 
redujo significativamente a 41,0 y 42,0 °C, acompañándose 
de cromatina en etapas más avanzadas y menor actividad 
de proteína quinasa activada por AMP (AMPK). Además, 
se detectó un aumento en la producción de progesterona 
durante las primeras horas de MIV a altas temperaturas, lo 
que sugiere que la alteración en las funciones de las células 
del cumulus contribuye a acelerar la meiosis ovocitaria.

Intervenciones como el uso de gradientes térmicos 
controlados (38,5 °C – 37 °C) han demostrado mitigar 
parcialmente estos efectos, mejorando hasta un 20% la 
formación de mórulas (Shi et al. 1998), lo que subraya la 
delicada homeostasis térmica requerida durante la MIV.

Por otra parte, los ovocitos bovinos son particularmente 
sensibles al enfriamiento (Martino et al. 1996). El daño 
celular aumenta a medida que la temperatura disminuye, 
y por debajo de los 10 °C los ovocitos no sobreviven más 
de 0,1 minutos. Parte de este daño se asocia a alteraciones 
en el huso meiótico, cuya integridad es crucial para la 
maduración. Wu et al. (1999) observaron que el enfriamiento 
de ovocitos en etapa de vesícula germinal a 4 °C o menos 
durante solo 10 minutos redujo significativamente la 
formación de husos normales y las tasas de segmentación 
posterior. De forma coincidente, otros autores también 
han reportado que los ovocitos bovinos muestran una alta 
sensibilidad a bajas temperaturas (Martino et al. 1996, 
Maya-Soriano et al. 2013).

Importancia del pH en la MIV. La alteración del pH 
influye en la homeostasis intracelular, afectando procesos 
clave como la síntesis de proteínas, la función mitocondrial, 
el metabolismo celular y la remodelación del citoesqueleto. 
En condiciones in vitro, las fluctuaciones del pH del 
medio de cultivo impactan negativamente en la motilidad 
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espermática, la maduración de los ovocitos y el desarrollo 
embrionario (Will et al. 2011). El pH también modifica 
los elementos del citoesqueleto de actina (Squirrell et al. 
2001), siendo éste esencial para el posicionamiento del 
huso meiótico en el ovocito (Zhu et al. 2003, Lénárt et al. 
2005). Una concentración moderada y estable de dióxido 
de carbono (CO₂) contribuye a mantener el pH del medio 
dentro del rango fisiológico (Pinyopummintr y Bavister 
1995), siendo especialmente importante ya que variaciones 
como la exposición del medio al aire ambiental, la fuga de 
CO₂ en la incubadora o durante el transporte, y la apertura 
repetida de la incubadora, pueden alterar el pH y reducir 
la competencia de los ovocitos (Clark y Swain 2014, 
Barceló-Fimbres et al. 2015). Además, una temperatura 
elevada puede reducir el pH y favorecer el estrés oxidativo, 
interrumpiendo funciones celulares esenciales (Larkindale 
y Knight 2002).

Tensión de oxígeno durante la MIV. Diversos 
factores pueden potenciar la producción endógena de ROS 
en condiciones in vitro; entre ellos, el ambiente gaseoso del 
cultivo constituye un componente clave. Las condiciones 
atmosféricas convencionales contienen alrededor de un 20% 
de oxígeno, lo que excede notablemente las concentraciones 
fisiológicas del tracto reproductivo, estimadas entre el 
3% y el 13% y reduce las tasas de logro de blastocistos 
respecto a cultivos in vitro realizados con 5% de oxígeno 
(Wrenzycki y Stinshoff 2013, Rosado-Pérez et al. 2019). 
Esta diferencia pone de manifiesto que los requerimientos 
de oxígeno varían según la etapa del proceso in vitro. No 
obstante, a diferencia de lo que ocurre en la etapa de cultivo 
in vitro de embriones, concentraciones de oxígeno del 20% 
parecen ser beneficiosas durante la maduración in vitro de 
los ovocitos (Pinyopummintr y Bavister 1995). 

Madurar y fertilizar ovocitos bovinos in vitro 
bajo una tensión de oxígeno fisiológica (5%) mejoró 
significativamente las tasas de segmentación (89,3% vs. 
82,5%) y formación de blastocistos (36,7% vs. 29,2%) 
en comparación con una tensión de oxígeno atmosférica 
(20%). Además, los blastocistos generados con bajo O₂ 
mostraron mayor tasa de eclosión (41,7% vs. 18,9%) y 
mayor número de células tras la criopreservación, lo que 
indica una mejor criotolerancia (Báez et al. 2021).

Implicancias de la exposición lumínica durante 
la MIV. Durante el desarrollo fisiológico, los ovocitos 
y embriones de mamíferos se encuentran protegidos 
de la exposición directa a la luz, lo que sugiere que no 
poseen mecanismos específicos para contrarrestar los 
efectos de la radiación electromagnética (Takenaka et al. 
2007, Khodavirdilou et al. 2021). En contraste, durante 
los procedimientos de PIV, la exposición a la luz visible 
(400–700 nm) resulta inevitable como consecuencia de 
las manipulaciones necesarias, tales como la observación 
microscópica, la evaluación del desarrollo embrionario y 
la selección de ovocitos o embriones viables (Vernon et al. 
2011).

Investigaciones previas han demostrado que 
la exposición lumínica actúa como un factor físico 
estresante capaz de inducir un desequilibrio entre 
sistemas prooxidantes y antioxidantes, promoviendo la 

generación ROS y daño oxidativo celular (Lin y Wang 
2021, Khodavirdilou et al. 2021). En particular, se ha 
descrito que exposiciones superiores a cinco minutos 
pueden incrementar significativamente la producción de 
ROS, afectando la calidad ovocitaria y embrionaria (Goto 
et al. 1993). La toxicidad lumínica depende de múltiples 
variables, entre ellas la longitud de onda, la intensidad de la 
luz, la duración de la exposición y la etapa del desarrollo en 
la que se produce el estímulo (Khodavirdilou et al. 2021).

En relación con la longitud de onda, numerosos 
trabajos coinciden en que los efectos eliminadores de 
la luz aumentan a medida que disminuye la longitud de 
onda. La luz azul (aproximadamente 400–500 nm) ha sido 
consistentemente asociada con un incremento marcado en 
la producción de ROS, oxidación de biomoléculas, daño 
en el ADN y alteraciones en el desarrollo embrionario 
(Hockberger et al. 1999, Oh et al. 2007, Takenaka et 
al. 2007, Du Plessis et al. 2008). Por el contrario, la luz 
roja, con longitudes de onda más largas (≈550–730 nm), 
ha demostrado ser considerablemente menos perjudicial, 
mostrando efectos mínimos o nulos sobre la viabilidad y 
el desarrollo embrionario en distintas especies, incluidos 
bovinos (Takenaka et al. 2007, Bognar et al. 2019, Bodis 
et al. 2020).

La vulnerabilidad del ovocito frente a la exposición 
lumínica se explica, en gran medida, por su particular 
fisiología mitocondrial. Las mitocondrias constituyen las 
principales fuentes celulares de ROS y cumplen un rol 
central en el metabolismo energético del ovocito (Keane 
y Ealy 2024). El ADN mitocondrial es especialmente 
susceptible al daño oxidativo debido a su proximidad al 
sitio de generación de ROS. Esta susceptibilidad se ve 
acentuada en los ovocitos, que contienen una cantidad 
elevada de mitocondrias —superior a las 100.000— en 
comparación con las células somáticas, que presentan entre 
1.000 y 2.500 mitocondrias (Malott et al. 2022). En este 
contexto, la exposición lumínica durante la MIV puede 
exacerbar el daño oxidativo mitocondrial y comprometer 
la competencia ovocitaria y el desarrollo embrionario 
posterior.

Si bien la exposición a la luz durante los 
procedimientos in vitro no puede eliminarse por completo, 
diversos estudios han demostrado que la implementación 
de estrategias de mitigación resulta eficaz para reducir sus 
efectos adversos. Entre ellas, se destaca el uso de filtros 
ópticos, particularmente filtros rojos, durante la observación 
microscópica, los cuales han mostrado minimizar la 
generación de ROS y preservar la calidad embrionaria 
(Takenaka et al. 2007). Asimismo, se ha evidenciado que 
la intensidad total de la luz y el tiempo de exposición 
desempeñan un rol más determinante que la longitud de 
onda de manera aislada, reforzando la necesidad de limitar 
la duración de las manipulaciones bajo iluminación directa 
(Khodavirdilou et al. 2021).

La exposición lumínica constituye un factor ambiental 
relevante durante el MIV. Por lo tanto, la optimización de 
las condiciones de iluminación, mediante la reducción del 
tiempo de exposición, el control de la intensidad lumínica y 
el uso de filtros adecuados, representan una estrategia clave 
para preservar la calidad ovocitaria y mejorar los resultados 
de la PIV.
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Estrés oxidativo durante la MIV. Durante las 
funciones celulares normales, como resultado de reacciones 
metabólicas y enzimáticas, se generan ROS, moléculas 
caracterizadas por la presencia de electrones no apareados, 
entre las que se incluyen el anión superóxido (O₂⁻), el 
peróxido de hidrógeno (H₂O₂) y el radical hidroxilo (OH) 
(Guérin et al. 2001, Phaniendra et al. 2015). Además de 
su origen endógeno, las ROS también pueden generarse a 
partir de factores exógenos propios de los sistemas de PIV, 
como inadecuadas condiciones ambientales (Kumar et al. 
2017, Haida y Hakiman 2019).

Estas especies presentan diferentes propiedades 
químicas y capacidades de difusión. Mientras que el OH 
ejerce su acción en un radio muy limitado alrededor de 
su sitio de formación, el O₂⁻ puede desplazarse a mayores 
distancias antes de interactuar con sus blancos celulares 
(Fridovich 1998). A través de estas interacciones, las 
ROS pueden modificar de manera oxidativa proteínas, 
receptores, fosfatasas, quinasas, canales iónicos y factores 
de transcripción, afectando múltiples vías de señalización 
celular (De Giusti et al. 2013, Zhao et al. 2019).

En condiciones fisiológicas, niveles controlados de 
ROS cumplen funciones celulares esenciales, participando 
en procesos como la adquisición de la competencia 
ovocitaria y el desarrollo embrionario temprano (Blondin 
et al. 1997, Combelles et al. 2009, Scialo et al. 2017). 
Sin embargo, cuando la producción de ROS excede la 
capacidad antioxidante del sistema, se establece un estado 
de estrés oxidativo.

El estrés oxidativo resulta del desequilibrio entre 
la generación de ROS y la eficacia de los mecanismos 
antioxidantes endógenos, lo que puede deberse tanto 
a una producción aumentada de radicales libres como 
a una disminución en la disponibilidad o actividad de 
antioxidantes celulares, incluyendo vitaminas B, C y E, 
selenio, glutatión (GSH), glutatión peroxidasa (GPX), 
superóxido dismutasa (SOD) y coenzima Q10 (Agarwal 
et al. 2014, Cagnone y Sirard 2016, Rosado-Pérez et al. 
2019). Este desbalance favorece un círculo vicioso que 
amplifica la generación de ROS y agrava el daño celular 
(Fridovich 1998, Luberda 2005).

En el contexto de la MIV, el exceso de ROS puede 
inducir daños oxidativos en lípidos, proteínas y ácidos 
nucleicos, comprometiendo la integridad celular del 
ovocito y afectando negativamente su competencia de 
desarrollo, así como activar vías asociadas a disfunción 
mitocondrial y apoptosis (Guérin et al. 2001, Yang et al. 
2018, Lin y Wang 2021). 

En la última década, se ha propuesto que, además de 
los mecanismos clásicos de apoptosis y autofagia, el estrés 
oxidativo excesivo durante la MIV puede activar vías 
alternativas de muerte celular. Entre ellas, la ferroptosis 
ha emergido como un proceso relevante, caracterizado 
como un tipo de muerte celular dependiente de hierro y de 
ROS, claramente distinta de la necrosis, la autofagia y la 
apoptosis. Sus rasgos característicos incluyen la captación 
celular de hierro, la generación intracelular de ROS 
mediante la reacción de Fenton, el agotamiento de GSH y 
la inactivación del glutatión peroxidasa 4 (GPX4) (Dixon 
et al. 2012, Jiang et al. 2021, Liu et al. 2023).

Uso de antioxidante durante la MIV. 

Se define como antioxidante a toda sustancia que, 
presente en bajas concentraciones en relación con el sustrato 
oxidable, es capaz de retrasar o inhibir significativamente 
la oxidación de dicho sustrato (Guérin et al. 2001, Prasad 
et al. 2018). 

Durante la MIV, la actividad antioxidante resulta 
esencial para proteger la viabilidad celular y favorecer la 
competencia ovocitaria (Lodde et al. 2021). El ovocito, 
por sí mismo, no cuenta con una maquinaria antioxidante 
suficientemente eficiente, por lo que depende en gran 
medida de las células del cumulus circundante. Estas células 
cumplen un rol fundamental al proporcionar metabolitos 
como GSH y melatonina, además de NADPH derivado 
del metabolismo de la glucosa, necesario para mantener el 
GSH reducido y funcional (El-Raey et al. 2011, Gutnisky et 
al. 2013, Lodde et al. 2021). Asimismo, expresan múltiples 
enzimas antioxidantes que contribuyen a neutralizar las 
ROS en el entorno inmediato del ovocito (Ali et al. 2003, 
Shaeib et al. 2016). Esta interacción es clave, ya que las 
células del cumulus también participan en la adquisición 
de la competencia del desarrollo durante la MIV (Gordon 
2003, Lodde et al. 2021). 

La suplementación del medio de maduración con 
antioxidantes ha demostrado ser una estrategia efectiva para 
mitigar los efectos del estrés oxidativo (Lodde et al. 2021). 
Uno de los primeros agentes estudiados es la cisteamina 
(compuesto tiólico), cuya inclusión en el medio de cultivo 
estimula la síntesis de GSH intracelular, un poderoso 
inhibidor de ROS (de Matos et al. 1995, Balasubramanian 
y Rho 2007, Biradar et al. 2025). 

De manera similar, la suplementación con 
melatonina ha mostrado efectos beneficiosos, mejorando 
tanto la maduración nuclear como la citoplasmática, 
evidenciada por la extrusión 1° CP, una distribución 
normal de gránulos corticales y mitocondrias, y un 
mayor potencial de membrana mitocondrial. Además, se 
observó una reducción significativa en los niveles de ROS 
intracelulares, un aumento en la producción de GSH y una 
disminución en la tasa de apoptosis temprana (Pang et al. 
2018). Sin embargo, se ha demostrado que concentraciones 
elevadas de melatonina pueden interferir con la progresión 
meiótica. En particular, la suplementación con dosis altas 
(100 μM) durante la MIV redujo significativamente la 
tasa de maduración ovocitaria y aumentó la proporción 
de ovocitos detenidos en metafase I, en comparación con 
concentraciones bajas (0,01–1 μM), sin evidenciar efectos 
citotóxicos directos (Farahavar y Shahne 2010).

Posteriormente, Gutiérrez-Añez et al. (2021) 
evaluaron el efecto de la melatonina durante la MIV 
en ovocitos bovinos de donantes prepúberes y adultas. 
Observaron que la suplementación con melatonina aumentó 
significativamente la tasa de blastocistos tanto en vacas 
adultas (24,8% vs. 16,0%) como en donantes prepúberes 
(23,1% vs. 11,1%). Además, mejoró la calidad embrionaria 
al incrementar el número total de células, el macizo celular 
interno (ICM) y la relación ICM:TE (trofoectodermo). En 
los ovocitos prepúberes, la melatonina permitió alcanzar 
valores comparables a los obtenidos en donantes adultas. 
En conjunto, este estudio evidencia que la melatonina 
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potencia la competencia ovocitaria y la calidad embrionaria 
en ambas categorías etarias.

Más recientemente, Biradar et al. (2025) compararon 
el efecto de melatonina y cisteamina sobre la MIV. La 
suplementación con melatonina (10−9 mol L-1) resultó 
en mayores tasas de ovocitos en MII, segmentación y 
formación de blastocistos en comparación con cisteamina 
(50 µM) y con el grupo control. Estos hallazgos sugieren 
que, mientras la cisteamina favorece principalmente la 
maduración citoplasmática al incrementar los niveles 
de GSH, la melatonina ejerce un efecto más amplio al 
mejorar tanto la maduración citoplasmática como nuclear, 
potenciando así la competencia de desarrollo embrionario.

La L-cisteína es un aminoácido azufrado reconocido 
por su capacidad para estimular la síntesis de GSH, proteger 
contra ROS y contribuir al mantenimiento del equilibrio 
redox celular (Nabenishi et al. 2012). Dado que el GSH 
extracelular no puede atravesar la membrana del ovocito, 
su acumulación intracelular depende de la habilidad de 
las células del cumulus para captar tioles y sintetizar GSH 
(Li et al. 2018). En este contexto, Elgebaly et al. (2022) 
demostraron que la suplementación del medio de MIV con 
0,8 mM de L-cisteína incrementó la proporción de ovocitos 
en metafase II, mejoró la expansión y comunicación de 
los COCs, y elevó la expresión de factores clave en la 
maduración ovocitaria.

Entre los compuestos naturales con potencial 
antioxidante evaluados recientemente, se encuentra la 
epigalocatequina (EGCG). A una concentración de 10 
μM, su presencia en el medio de maduración aumentó 
significativamente las tasas de maduración y fertilización 
in vitro de ovocitos bovinos, mostrando mejores resultados 
que el alfa tocoferol solo o en combinación (Singh et al. 
2019). 

Otros antioxidantes como la quercetina, la vitamina 
C y el resveratrol también han demostrado su eficacia al 
reducir los niveles intracelulares de ROS en ovocitos 
madurados in vitro (Sovernigo et al. 2017). 

Por otra parte, en situaciones que simulan condiciones 
de estrés metabólico como el balance energético negativo 
en vacas lecheras de alta producción, se ha observado 
que la suplementación con ácido alfa-linolénico (ALA, 
un omega-3) durante la MIV protege la viabilidad de los 
ovocitos expuestos a ambientes lipotóxicos, especialmente 
al preservar la integridad de las células del cumulus (Marei 
et al. 2017). 

En ovocitos bovinos, los desequilibrios redox pueden 
inducir ferroptosis, afectando directamente la MIV (Dixon 
et al. 2012, Jiang et al. 2021). En este contexto, el ácido 
fólico (AF) ha sido evaluado como antioxidante durante 
la MIV, principalmente por su capacidad para restablecer 
el equilibrio redox y reducir la acumulación de ROS. Su 
papel en procesos epigenéticos lo posiciona como un factor 
clave para mejorar tanto la competencia ovocitaria como el 
desarrollo embrionario (Baghshahi et al. 2021, Verruma et 
al. 2021, Yang et al. 2024).

Verruma et al. (2021) evaluaron la suplementación 
con 0, 10, 30 y 100 μM de AF durante la MIV de ovocitos 
de distinto grado de calidad. Encontraron que 30 μM 
mejoró la producción embrionaria en ovocitos de menor 
calidad (GIII), mientras que 100 μM redujo la producción 

en ovocitos de alta calidad (GI). Baghshahi et al. (2021) 
estudiaron los efectos de añadir 100 ng mL-1 de AF 
disminuyó significativamente los niveles intracelulares de 
ROS y mejoró las tasas de fertilización, además de inducir 
cambios en la expresión de genes de metilación del ADN 
(Dnmt1, Dnmt3a y Dnmt3b).

Más recientemente, Yang et al. (2024) reportaron 
que 50 μM incrementó la maduración ovocitaria en un 
8,95%, la tasa de segmentación en 6,94% y la formación 
de blastocistos en 4,36% respecto al grupo control. 
Además, demostraron que este efecto estuvo mediado por 
la inhibición de la ferroptosis: el AF redujo la acumulación 
intracelular de Fe²⁺ y ROS, al tiempo que aumentó los 
niveles de GSH.

El AF mejora la competencia ovocitaria y el desarrollo 
embrionario de forma dosis-dependiente, integrando 
efectos antioxidantes y epigenéticos mediados por la vía 
de la ferroptosis.

CONCLUSIONES

La maduración in vitro es un punto crítico dentro 
del sistema de producción in vitro de embriones, ya 
que pequeñas variaciones en las condiciones de cultivo 
pueden comprometer significativamente la competencia 
ovocitaria y el desarrollo embrionario posterior. Factores 
inherentes a la manipulación in vitro, como el tiempo de 
maduración, la temperatura, el pH y la exposición a la luz, 
pueden inducir un desequilibrio redox caracterizado por un 
aumento en la producción endógena de especies reactivas 
del oxígeno. Si bien, como se evidenció anteriormente, 
pequeñas cantidades de ROS son necesarias para funciones 
celulares esenciales, su exceso puede provocar serios daños 
oxidativos en estructuras intracelulares hasta activación 
de las vías de muerte celular. En este contexto, diversas 
estrategias basadas en la suplementación antioxidante de 
los medios de maduración han sido evaluadas, mostrando 
resultados dependientes del tipo de compuesto, la dosis 
empleada y las condiciones específicas del sistema de 
cultivo. Frente a esta circunstancia, el desafío futuro de cada 
laboratorio será llevar un riguroso control e identificar los 
puntos críticos a fin de reducir al mínimo la exposición de 
las gametas a factores estresantes e identificar la estrategia 
antioxidante que mejor se adapte a sus condiciones. 
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