Configuración de políticas y criterios de planeación para la implementación de la movilidad aérea urbana
DOI:
https://doi.org/10.30972/crn.41418539Palabras clave:
Estudios urbanos, desarrollo urbano, infraestructura urbana, planeación urbana, movilidad urbana sostenibleResumen
La Movilidad Aérea Urbana es una tecnología emergente de transporte aéreo a baja altitud, a nivel urbano e interurbano, que dará lugar a cambios fundamentales en materia de movilidad y conectividad en las ciudades / regiones del futuro. Esta nueva tecnología motivará una importante transformación en las infraestructuras de la ciudad, y no solo las de transporte, y en el propio desarrollo urbano. Si bien los impactos de estas transformaciones aún están por verse, los planificadores y formuladores de políticas, a nivel urbano, deben prepararse para estos cambios a fin de minimizar el potencial de impactos adversos y maximizar la probabilidad de éxito en la implantación sostenible de esta nueva tecnología. Por ello, el objetivo de este artículo de revisión es analizar una potencial configuración de políticas y criterios de actuación en materia de planeación urbana que deberán considerar las autoridades y agentes públicos en el próximo lanzamiento y desarrollo de la Movilidad Aérea Urbana en las ciudades.
Descargas
Citas
Ahn, B. y Hwang, H.-Y. (2022). Design Criteria and accommodating capacity analysis of vertiports for urban air Mobility and its application at Gimpo Airport in Korea. Applied Sciences, 12, 6077. DOI: 10.3390/app12126077
AIRBUS (2018). Blueprint for the sky. Toulouse: AIRBUS.
Al Haddad, C., Chaniotakis, E., Straubinger, A., Plötner, K. y Antoniou, C. (2020). Factors affecting the adoption and use of urban air mobility. Transportation Research Part A, 132, 696–712. DOI: 10.1016/j.tra.2019.12.020
Anand, A., Kaur, H., Justin, C. y Mavris, D. (2021). A scenario-based evaluation of global urban fair mobility demand. AIAA Scitech Forum. DOI: 10.2514/6.2021-1516
APA-MTI (2024). Planning for Advanced Air Mobility. Chicago: American Planning Association & Mineta Transportation Institute.
ASD (2023). Urban Air Mobility and Sustainable Development. Brussels: Aerospace, Security and Defence Industries Association of Europe.
Asmer, L., Jaksche, R. y Pak, H. (2024). A city-centric approach to estimate and evaluate global Urban Air Mobility demand. CEAS Aeronautical Journal. DOI: 10.1007/s13272-024-00742-w
Birrell, S., Payre, W., Zdanowicz, K. y Herriotts, P. (2022). Urban air mobility infrastructure design: Using virtual reality to capture user experience within the world’s first urban airport. Applied Ergonomics, 105, 103843, DOI: 10.1016/j.apergo.2022.103843
BOEING (2018). Flight path for the future of mobility. https://acortar.link/zcfCpF
Borgato, S., Chirico, F., Fermi, F. y Le Petit, Y. (2023). Costs and benefits of the sustainable urban mobility transition. Transportation Research Procedia, 72, 1145-1152. DOI: 10.1016/j.trpro.2023.11.571
Bosson, C. y Lauderdale, T. (2018). Simulation evaluations of an autonomous urban air mobility network management and separation service. Aviation Technology, Integration, and Operations Conference. June 25-29, 2018, Atlanta. DOI: 10.2514/6.2018-3365
Brelje, B. y Martins, J. (2019). Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, 104, 1-19. DOI: 10.1016/j.paerosci.2018.06.004
Brunelli, M., Ditta, C. y Postorino, M. (2023). New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460. DOI: 10.1016/j.jairtraman.2023.102460
Bulanowski, K., Gillis, D., Fakhraian, E. y Lima, S. (2022). AURORA-Creating Space for Urban Air Mobility in Our Cities. 6th Conference on Sustainable Urban Mobility, Aug. 31-Sept. 2, 2022, Skiathos Island.
CAMI (2021). Integrating Advanced Air Mobility into Communities. White Paper. Community Air Mobility Initiative (CAMI). https://acortar.link/RTALMu
Carrizo, D. y Moller, C. (2018). Estructuras metodológicas de revisiones sistemáticas de literatura en Ingeniería de Software: un estudio de mapeo sistemático. Ingeniare, Revista chilena de ingeniería, 26, 45-54. DOI: 10.4067/S0718-33052018000500045
Carvalho, J., Pinho de Sousa, J. y Macário, R. (2024). Towards a more inclusive mobility: participatory mobility planning at a metropolitan scale. Transportation Research Procedia, 78, 222-229. DOI: 10.1016/j.trpro.2024.02.029
Causa, F., Franzone, A. y Fasano, G. (2022). Strategic and tactical path planning for urban air mobility: overview and application to real-world use cases. Drones, 7(1), 11. DOI: 10.3390/drones7010011
Cohen, A. y Shaheen, S. (2021). Urban Air Mobility: Opportunities and Obstacles. Working Paper, Transportation Sustainability Research Center, University of California (Berkeley).
Cohen, A., Shaheen, S. y Farrar, E. (2021). Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6074-6087. DOI: 10.1109/TITS.2021.3082767
Cohen, A., Guan, J., Beamer, M. y Dittoe, R. (2020). Reimagining the Future of Transportation with Personal Flight: Preparing and Planning for Urban Air Mobility. White Paper. Transportation Sustainability Research Center, University of California (Berkeley). DOI: 10.7922/G2TT4P6H
Cotton, W. y Wing, D. (2018). Airborne trajectory management for urban air mobility. Aviation Technology, Integration, and Operations Conference. June 25-29, 2018, Atlanta. DOI: 10.2514/6.2018-3674
Cox, K. (2023). eVTOLs and vertiports: Operations and infrastructure for a new and sustainable way to fly. Journal of Airport Management. https://acortar.link/tqPfcG
Deng, C., Shi, Z.; Chi, B. y Wang, J. (2024). Evaluating the Development Levels of Green Urban Transportation Systems. Sustainability, 16, 4795. DOI: 10.3390/su16114795
Dulia, E. y Shihab, S. (2024). How to Negotiate with Private Investors for Advanced Air Mobility Infrastructure? An Analysis of Public Private Partnerships using Game Theory. Working Paper. Kent State University. DOI: 10.13140/RG.2.2.25387.86566/1
EASA (2022). Vertiports. Cologne: European Union Aviation Safety Agency.
Eissfeldt, H. (2020). Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320, DOI: 10.3390/su12083320
FAA (2023). Urban Air Mobility (UAM). Concept of Operations. Washington DC: Federal Aviation Administration, U.S. Department of Transportation.
FAA (2022). Memorandum. Vertiport Design. Washington DC: Federal Aviation Administration, U.S. Department of Transportation.
Fadhil, D. (2018). A GIS-based analysis for selecting ground infrastructure locations for urban air mobility. Master Thesis, Technical University of Munich.
Farshchian, B. y Dahl, Y. (2015). The role of ICT in addressing the challenges of age-related falls: A research agenda based on a systematic mapping of the literature. Personal and Ubiquitous Computing, 19(3), 649–666. DOI: 10.1007/s00779-015-0852-1
Fredericks, W., Sripad, S. y Bower, G. (2018). Performance metrics required of next-generation batteries to electrify vertical takeoff and landing (VTOL) aircraft. ACS Energy Letters, 3(12), 2989–2994, DOI: 10.1021/acsenergylett.8b02195
Gallo, M. y Marinelli, M. (2020). Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability, 12, 7499. DOI: 10.3390/su12187499
Gillis, D., Petri, M., Pratelli, A. y Semanjski, I. (2021). Urban Air Mobility: A State of Art Analysis. Computational Science and Its Applications – 21st International Conference, September 13–16, 2021, Cagliari (Italy).
Gouveia, M., Dias, V. y Silva, J. (2022). Management of urban air mobility for sustainable and smart cities: Vertiport networks using a user-centred design. Journal of Airline and Airport Management, 12(1), 15-28. DOI: 10.3926/jairm.207
Goyal, R., Reiche, C., Fernando, C. y Cohen, A. (2021). Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets. Sustainability, 13(13), 7421. DOI: 10.3390/su13137421
Hörcher, D. y Tirachini, A. (2021). A review of public transport economics. Economics of Transportation, 25, 100196. DOI: 10.1016/j.ecotra.2021.100196
Hu, L., Yan, X. y Yuan, Y. (2025). Development and challenges of autonomous electric vertical take-off and landing aircraft. Heliyon, 11, e41055. DOI: 10.1016/j.heliyon.2024.e41055
Husemann, M., Kirste, A. y Stumpf, E. (2024). Analysis of cost-efficient urban air mobility systems: Optimization of operational and configurational fleet decisions. European Journal of Operational Research, 317(3), 678-695. DOI: 10.1016/j.ejor.2023.04.040
Jin, Z., Ng, K., Zhang, C., Wu, L. y Li, A. (2024). Integrated optimization of strategic planning and service operations for urban air mobility systems. Transportation Research Part A, 183, 104059. DOI: 10.1016/j.tra.2024.104059
Kitchenham, B. y Charters, S. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Technical Report. Keele University and University of Durham. https://acortar.link/ZMnVtC
KPMG (2023). Integrating air mobility into wider infrastructure. Aviation 2030 series, White Paper. KPMG. https://acortar.link/aFLcHL
Krylova, M. (2022). Urban planning requirements for the new air mobility (UAM) infrastructure integration. Master Thesis, Frankfurt University of Applied Sciences, Germany.
Liberacki, A. (2023). Key factors in reducing cost of UAM implementation. Aircraft Engineering and Aerospace Technology, 95(9), 1403-1410. DOI: 10.1108/AEAT-10-2022-0273
LILIUM (2020). Designing a scalable vertiport. Gauting, Germany, Lilium GmbH. https://acortar.link/Sq6r8k
Lim, E. y Hwang, H. (2019). The selection of vertiport location for on-demand mobility and its application to Seoul metro area. International Journal of Aeronautical and Space Sciences. DOI: 10.1007/s42405-018-0117-0
López, A., Ramírez-Díaz, A. y Castilla-Rodríguez, I. (2023). Wind farm energy surplus storage solution with second-life vehicle batteries in isolated grids. Energy Policy, 173, 113373. DOI: 10.1016/j.enpol.2022.113373
Mueller, E., Kopardekar, P. y Goodrich, K. (2017). Enabling Airspace Integration for High-Density Mobility Operations. 17th AIAA Aviation Technology, Integration, and Operations Conference. 5-9 June 2017, Denver (Colorado), DOI: 10.2514/6.2017-3086
NASA (2018). Urban Air Mobility Market Study. Washington DC: National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20190000519
Nieuwenhuijsen, M. (2020). Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environment International, 140, 105661. DOI: 10.1016/j.envint.2020.105661
NREL (2023). Federal Aviation Administration Vertiport Electrical Infrastructure Study. Golden, CO: National Renewable Energy Laboratory. DOI: 10.2172/2203520
Ortlieb, M. (2024). Enabling Safe and Scalable Urban Air Mobility: An Air Traffic Management and Communication Framework for Seamless Air Space Integration. AIAA SCITECH 2024 Forum. DOI: 10.2514/6.2024-0454
Pak, H. (2024). Can Urban Air Mobility become reality? Opportunities and challenges of UAM as innovative mode of transport and DLR contribution to ongoing research. CEAS Aeronautical Journal. DOI: 10.1007/s13272-024-00733-x
Perperidou, D. y Kirgiafinis, D. (2022). Urban Air Mobility (UAM) Integration to Urban Planning. 6th Conference on Sustainable Urban Mobility, August 31–September 2, 2022, Skiathos Island.
Petersen, K., Vakkalanka, S. y Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology, 64, 1–18. DOI: 10.1016/j.infsof.2015.03.007
Petersen, K., Feldt, R. y Mujtaba, S. (2008). Systematic mapping studies in software engineering. 12th International Conference on Evaluation and Assessment in Software Engineering. DOI: 10.14236/ewic/EASE2008.8
Ploetner, K. (2020). Long-term application potential of urban air mobility complementing public transport: an upper Bavaria example. CEAS Aeronautical Journal, 11(4), 991–1007. DOI: 10.1007/s13272-020-00468-5
Porsche Consulting (2021). The economics of vertical mobility. Stuttgart: Porsche Consulting.
Preis, L. y Hornung, M. (2022). Vertiport Operations Modeling, Agent-Based Simulation and Parameter Value Specification. Electronics, 11(7), 1071. DOI: 10.3390/electronics11071071
Preis, L. (2021). Quick Sizing, Throughput Estimating and Layout Planning for VTOL Aerodromes – A Methodology for Vertiport Design. AIAA Aviation Forum, August 2-6, 2021. DOI: 10.2514/6.2021-2372
Roland Berger (2020). Urban Air Mobility. Munich: Roland Berger.
Ruggieri, R., Ruggeri, M., Vinci, G. y Poponi, S. (2021). Electric Mobility in a Smart City: European Overview. Energies, 14, 315. DOI: 10.3390/en14020315
Schweiger, K., Knabe, F. y Korn, B. (2022). An exemplary definition of a vertidrome’s airside concept of operations. Aerospace Science and Technology, 125, 107144, DOI: 10.1016/j.ast.2021.107144
Shah, K. (2021). Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. Journal of Cleaner Production, 326, 129392. DOI: 10.1016/j.jclepro.2021.129392
Shon, H. y Lee, J. (2025). An optimization framework for urban air mobility (UAM) planning and operations. Journal of Air Transport Management, 124, 102720. DOI: 10.1016/j.jairtraman.2024.102720
Silva, C. y Solís, E. (2024). Aircraft Design Implications for Urban Air Mobility Vehicles Performing Public Good Missions. Vertical Flight Society’s 80th Annual Forum & Technology Display. Montréal, Canada, May 7-9, 2024. https://goo.su/UGXTu
Straubinger, A., Michelmann, J. y Biehle, T. (2021). Business model options for passenger urban air mobility. CEAS Aeronautical Journal, 12, 361–380. DOI: 10.1007/s13272-021-00514-w
Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K., Kaiser, J. y Plötner, K. (2020). An overview of current research and developments in urban air mobility – Setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852. DOI: 10.1016/j.jairtraman.2020.101852
Straubinger, A. y Rothfeld, R. (2018). Identification of relevant aspects for personal air transport system integration in urban mobility modelling. Proceedings of 7th Transport Research Arena TRA, 212, 1–10. DOI: 10.5281/zenodo.1446077
SUMP (2021). Urban Air Mobility and Sustainable Urban Mobility Planning – Practitioner Briefing. Brussels: UIC2–UAM Initiative Cities Community (EU’s Smart Cities Marketplace).
Sun, L. (2021). Reducing energy consumption and pollution in the urban transportation sector: A review of policies and regulations in Beijing. Journal of Cleaner Production, 285, 125339. DOI: 10.1016/j.jclepro.2020.125339
Takacs, A. y Haidegger, T. (2022). Infrastructural requirements and regulatory challenges of a sustainable Urban Air Mobility ecosystem. Buildings, 12, 747. DOI: 10.3390/buildings12060747
The Beck Group (2019). Uber Elevate Summit 2019. https://goo.su/9uCmSG
Thipphavong, D. (2018). Urban Air Mobility Airspace Integration Concepts and Considerations. Aviation Technology, Integration, and Operations Conference, June 25-29, 2018, Atlanta.
Tojal, M. y Paletti, L. (2023). Is Urban Air Mobility Environmentally Feasible? Defining the Guidelines for a Sustainable Implementation of its Ecosystem. Transportation Research Procedia, 72, 1747–1754. DOI: 10.1016/j.trpro.2023.11.649
Torens, C. (2021). Horizon UAM: Safety and Security Considerations for Urban Air Mobility. AIAA Aviation Forum, August 2-6, 2021. DOI: 10.2514/6.2021-3199
Torrisi, V., Garau, C., Ignaccolo, M. y Inturri, G. (2020). Sustainable Urban Mobility Plans: Key Concepts and a Critical Revision on SUMPs Guidelines. In: Gervasi, O. (Ed), Computational Science and Its Applications. Cham: Springer. DOI: 10.1007/978-3-030-58820-5_45
UAM Geomatics (2019). How Public-Private Partnerships Will Lead Urban Air Mobility. White Paper. UAM Geomatics. https://acortar.link/xxVNkl
UNDP (2022). The Sky’s Not The Limit: How Lower-Income Cities Can Leverage Drones. Singapore: UNDP Global Centre for Technology, Innovation and Sustainable Development.
Vanhala, E., Kasurinen, J., Knutas, A. y Herala, A. (2022). The application domains of systematic mapping studies: a mapping study of the first decade of practice with the method. IEEE Access. DOI: 10.1109/ACCESS.2022.3165079
Vascik, P. y Hansman, R. (2019). Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. AIAA Scitech 2019 Forum. 7-11 January 2019, San Diego (California). DOI: 10.2514/6.2019-0526
Vilathgamuwa, M., Mishra, Y., Yigitcanlar, T., bhaskar, A. y Wilson, C. (2022). Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure. Sustainability, 14, 2796. DOI: 10.3390/su14052796
Werland, S. y Rudolph, F. (2019). Funding and financing of Sustainable Urban Mobility Measures. White Paper. Wuppertal Institute. https://acortar.link/vPin8g
Wilhelm, A. (2021). Infrastructure Requirements for Urban Air Mobility: A Financial Evaluation. Working Paper. Vanderbilt University. https://acortar.link/CODwqw
Yedavalli, P. y Cohen, A. (2022). Planning Land Use Constrained Networks of Urban Air Mobility Infrastructure in the San Francisco Bay Area. Transportation Research Record, 2676(7), 106-116. DOI: 10.1177/03611981221076839
Yun, J. y Hwang, H. (2020). Requirement Analysis of Efficiency, Reliability, Safety, Noise, Emission, Performance and Certification Necessary for the Application of Urban Air Mobility (UAM). Journal of Advanced Navigation Technology, 24(5), 329-342. DOI: 10.12673/jant.2020.24.5.329
Descargas
Publicado
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
CUADERNO URBANO sostiene su compromiso con las políticas de Acceso Abierto a la información científica, al considerar que tanto las publicaciones científicas como las investigaciones financiadas con fondos públicos deben circular en Internet en forma libre, gratuita y sin restricciones.
CUADERNO URBANO ratifica el modelo Acceso Abierto en el que los contenidos de las publicaciones científicas se encuentran disponibles a texto completo libre y gratuito en Internet, sin embargos temporales, y cuyos costos de producción editorial no son transferidos a los autores. Esta política propone quebrar las barreras económicas que generan inequidades tanto en el acceso a la información, como en la publicación de resultados de investigaciones.
.jpg)







