Metodología integrada para la implementación y visualización de datos LiDAR en vehículos autónomos mediante ROS y Jetson Nano

Authors

  • Damian Raimundo Vazquez Grupo Universitario de Automatización (GUDA). Universidad Tecnológica Nacional - Facultad Regional Resistencia
  • Carlos Torres Grupo Universitario de Automatización (GUDA). Universidad Tecnológica Nacional - Facultad Regional Resistencia.
  • Jorge Omar Mariguetti Grupo Universitario de Automatización (GUDA). Universidad Tecnológica Nacional - Facultad Regional Resistencia
  • Sergio Gramajo Grupo Universitario de Automatización (GUDA). Universidad Tecnológica Nacional - Facultad Regional Resistencia
  • And´res Aldo Robledo Sánchez Alberto Grupo Universitario de Automatización (GUDA). Universidad Tecnológica Nacional - Facultad Regional Resistencia

DOI:

https://doi.org/10.30972/eitt.928182

Keywords:

LiDAR, ROS, RVIZ

Abstract

This work presents a clear and replicable methodology for the utilization of LiDAR sensors in projects related to autonomous vehicles and Advanced Driver Assistance Systems (ADAS). It addresses the limitations of proprietary tools provided by sensor manufacturers by offering a flexible and customizable alternative through the Robot Operating System (ROS) and tools such as RVIZ. The methodology details the use of the SICK S3000 sensor in combination with Jetson Nano hardware, highlighting its capability to handle advanced libraries such as OpenCV, YOLO, and sick_scan. Key steps include configuration, data capture, storage in ROS Bag files, and conversion to more manageable formats like CSV, enabling offline analysis and experiment reproducibility. Practical examples of data visualization and results in vehicular contexts are presented, along with electrical configuration proposals to ensure the proper functioning of the sensor and complementary hardware. This work significantly contributes to the advancement of LiDAR sensor integration and application, providing accessible tools for students and

Downloads

Download data is not yet available.

References

Artiom Basulto-Lantsova, Jose A. Padilla Medina, Francisco J. Perez Pinal, Alejandro I. Barranco-Gutierrez. Performance comparative of OpenCV Template Matching method on Jetson TX2 and Jetson Nano developer kits. Authorized licensed use limited to: MINCYT. Downloaded on October 17,2022 at 18:10:49 UTC from IEEE Xplore. Restrictions apply.

Debada E. and D. Gillet, “Virtual vehicle-based cooperative maneuver planning for connected automated vehicles at single-lane roundabouts,” IEEE Intelligent Transportation Systems Magazine, vol. 10, no. AR- TICLE, pp. 35–46, 2018.

Ihab S. Mohamed , Alessio Capitanelli , Fulvio Mastrogiovanni, Stefano Rovetta , Renato Zaccaria. A 2D laser rangefinder scans dataset of standard EUR pallets. journal homepage: www.elsevier.com/locate/dib

Sharan Amar Magavi, Behaviour modelling of Vehicles at a Roundabout. Tesis de Maestría. School of Information Science, Computer and Electrical Engineering Halmstad University. 2020.

Vazquez Raimundo 2024.

https://drive.google.com/file/d/1PuA8FagcZfpjEU57CdT0TjZvR81xPvIt/view?usp=drive_link

Völz, Benjamin, Learning to Predict Pedestrians for Urban Automated Driving. Trabajo de Tesis Doctoral. 2020. https://doi.org/10.3929/ethz-b-000418654

Wang Yang , Ding Bo, Li Su Tang. “TS-YOLO:An efficient YOLO Network for Multi-scale Object Detection”. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). Date Added to IEEE Xplore: 23 March 2022.

Published

2024-12-31

How to Cite

Vazquez, D. R., Torres, C., Mariguetti, J. O., Gramajo, S., & Robledo Sánchez Alberto, A. A. (2024). Metodología integrada para la implementación y visualización de datos LiDAR en vehículos autónomos mediante ROS y Jetson Nano. Extensionismo, Innovación Y Transferencia Tecnológica, 9(2), 35–44. https://doi.org/10.30972/eitt.928182

Issue

Section

Extensionist Experiences