Series de precipitación global: implicancias para el estudio de eventos extremos en áreas serranas

Autores/as

  • Ana Lia Casado Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Centro de Emprendedorismo y Desarrollo Territorial Sostenible, Universidad Provincial del Sudoeste https://orcid.org/0000-0003-4480-3756
  • Federico Javier Berón de la Puente Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Geografía y Turismo, Universidad Nacional del Sur https://orcid.org/0000-0003-4228-4593
  • Verónica Gil Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Geografía y Turismo, Universidad Nacional del Sur https://orcid.org/0000-0002-2824-204X

DOI:

https://doi.org/10.30972/fac.3427735

Palabras clave:

Precipitación global, CPC, CHIRPS, Eventos de precipitación extrema, Sierras australes bonaerenses

Resumen

Los datos climáticos globales son una alternativa muy útil frente a la deficiencia espacio-temporal de registros. Si bien su uso se ha generalizado, existen aún varios interrogantes acerca de la confiabilidad de estos productos para la detección de precipitaciones extremas en terrenos complejos. Este estudio evalúa el potencial de aplicación de series globales de precipitación diaria para el estudio de eventos extremos en las Sierras Australes Bonaerenses (Argentina). Para ello, se comparan las series globales unificadas de precipitación del Centro de Predicción Climática (CPC) y las series de precipitación infrarroja con datos de estación del Grupo de Peligros Climáticos (CHIRPS). Se utilizan los índices Rx1d, Rx5d y SDII junto con R13 y R25 para explorar el ajuste y la confiabilidad de las series en términos de magnitud y frecuencia de extremos, respectivamente. Los resultados muestran un ajuste bajo-moderado para los cinco índices, con mayores inconsistencias en la intensidad y la frecuencia de eventos. Tanto la magnitud como la frecuencia son subestimadas y los errores que se incrementan junto con el potencial pluviométrico de las estaciones. Se evidencian asimismo variaciones espaciales de ajuste y confidencialidad que resultan del contraste topográfico entre los sectores serrano y extra serrano. Si bien CPC arroja mejores resultados que CHIRPS, se concluye que ninguna de las dos series resulta adecuada para la evaluación de eventos extremos y su variabilidad en las Sierras Australes Bonaerenses, en razón de las limitantes de escala y orografía.

Citas

Alexander, L. V. (2016). Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11, 4-16.

Aliaga, V. S., Ferrelli, F., & Piccolo, M. C. (2017). Regionalization of climate over the Argentine Pampas. International journal of climatology, 37, 1237-1247.

Berón de la Puente, F., & Gil, V. (2023). Precipitaciones erosivas en el Sistema de Ventania (Buenos Aires, Argentina). Párrafos Geográficos, 1(22), 51-65.

Berón de la Puente, F., Gil, V., & Viale, M. (2022). Realzamiento orográfico de las precipitaciones en las Sierras de la Ventana. CONGREMET XIV, Buenos Aires.

Bohn, V. Y., & Piccolo, M. C. (2018). Standardized precipitation evapotranspiration index (Spei) as a tool to determine the hydrological dynamic of plain regions (Argentina). Geosciences- Geociências, 37(3), 627-637.

Campo, A. M., Silva, A. M., & Gil, V. (2011). Aplicación de cartografía temática para la identificación y análisis de la exposición al peligro de inundación por crecidas repentinas. Sierra de la Ventana, Buenos Aires, Argentina. Revista Geográfica del Sur, 2, 73-86.

Casado, A. (2021). Rainfall-runoff modelling in dryland catchments, Sauce Grande, Argentina. Tecnología y ciencias del agua, 12(5), 254-303. https://doi.org/10.24850/j-tyca-2021-05-06

Casado, A., & Campo, A. M. (2019). Extremos hidroclimáticos y recursos hídricos: estado de conocimiento en el suroeste bonaerense, Argentina. Cuadernos Geográficos, 58(1), 6-26.

Casado, A., & Picone, N. (2018). Aplicabilidad de los datos grillados para el análisis espaciotemporal de las precipitaciones, provincia de Buenos Aires (Argentina). Párrafos Geográficos, 17(1), 46-62.

Contractor, S., Alexander, L. V., Donat, M. G., & Herold, N. (2015). How well do gridded datasets of observed daily precipitation compare over Australia? Advances in Meteorology, 2015(1), 325718. https://doi.org/10.1155/2015/325718

Demoulin, A., Zarate, M., & Rabassa, J. (2005). Long-term landscape development: a perspective from the southern Buenos Aires ranges of east central Argentina. Journal of South American Earth Sciences, 19, 193-204.

Ferrelli, F., Brendel, A., Aliaga, V. S., Piccolo, M. C., & Perillo, G. M. E. (2019). Climate regionalization and trends based on daily temperature and precipitation extremes in the south of the Pampas (Argentina). Cuadernos de Investigación Geográfica, 45(1), 393-416. https://doi.org/10.18172/cig.3707

Ferrelli, F., Bustos, M. L., Piccolo, M. C., Huamantinco Cisneros, M. A., & Perillo, G. M. E. (2016). Downscaling de variables climáticas a partir del reanálisis NCEP/NCAR en el sudoeste de la provincia de Buenos Aires (Argentina). Papeles de Geografía, 62, 21-33.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., . . . Hoell, A. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific data, 2(1), 1-21. https://doi.org/doi.org/10.1038/sdata.2015.66

Gampe, D., & Ludwig, R. (2017). Evaluation of gridded precipitation data products for hydrological applications in complex topography. Hydrology, 4(4), 53. https://doi.org/10.3390/hydrology4040053

Gentili, J. O., & Gil, V. (2013). Variabilidad temporal de las precipitaciones en vertientes opuestas del Sistema de Ventania, Buenos Aires, Argentina. Revista Universitaria de Geografía, 22(1), 147-166.

Ghaedamini, H. A., Morid, S., Nazemosadat, M. J., Shamsoddini, A., & Moghadam, H. S. (2021). Validation of the CHIRPS and CPC-Unified products for estimating extreme daily precipitation over southwestern Iran. Theoretical and Applied Climatology, 146, 1207-1225. https://doi.org/10.1007/s00704-021-03790-

Gil, V., Zapperi, P., Campo, A. M., Iuorno, M. V., & Ramborger, M. A. (2008). Análisis de las precipitaciones de otoño y primavera en el Suroeste bonaerense. VII Jornadas de Geografía Física, Jujuy, Argentina.

Gulizia, C., & Camilloni, I. (2016). A spatio-temporal comparative study of the representation of precipitation over South America derived by three gridded data sets. International Journal of Climatology, 36(3), 1549-1559. https://doi.org/10.1002/joc.4416

Harrington, H. (1947). Explicación de las hojas geológicas 33m y 34m, Sierras de Curamalal y de la Ventana. D. d. M. y. Geología.

Herold, N., Behrangi, A., & Alexander, L. V. (2017). Large uncertainties in observed daily precipitation extremes over land. Journal of Geophysical Research: Atmospheres, 122(2), 668-681. https://doi.org/10.1002/2016JD025842

Karl, T. R., Nicholls, N., & Ghazi, A. (1999). Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. In Weather and climate extremes: Changes, variations and a perspective from the insurance industry (pp. 3-7). Springer.

Kayano, M. T., & Andreoli, R. V. (2007). Relations of South American summer rainfall inter-annual variations with the Pacific Decadal Oscillation. International Journal of Climatology, 27, 531-540.

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. B. (2017). So, how much of the Earth’s surface is covered by rain gauges? Bulletin of the American Meteorological Society, 98(1), 69-78. https://doi.org/10.1175/BAMS-D-14-00283.1

Koutsoyiannis, D., & Papalexiou, S. M. (2017). Extreme rainfall: Global perspective. In V. P. Singh (Ed.), Handbook of applied hydrology (Vol. 74, pp. 1-74.16). McGraw‐Hill.

Lambrecht, Y., Montico, A., & Picone, N. (2024). Validación de precipitación estimada por CHIRPS en una región semiárida de Argentina. Boletín Geográfico, 46, 1-16.

Lawal, I. M., Bertram, D., White, C. J., Jagaba, A. H., Hassan, I., & Shuaibu, A. (2021). Multi-criteria performance evaluation of gridded precipitation and temperature products in data-sparse regions. Atmosphere, 12(12), 1597. https://doi.org/10.3390/atmos12121597

Merino, A., García-Ortega, E., Navarro, A., Fernández-González, S., Tapiador, F. J., & Sánchez, J. L. (2021). Evaluation of gridded rain-gauge-based precipitation datasets: Impact of station density, spatial resolution, altitude gradient and climate. International Journal of Climatology, 41(5), 3027-3043. https://doi.org/10.1002/joc.7003

Peterson, T., Folland, C., Gruza, G., Hogg, W., Mokssit, A., & Plummer, N. (2001). Report on the activities of the working group on climate change detection and related rapporteurs. World Meteorological Organization. https://library.wmo.int/idurl/4/37423

Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., Razavi, S., Tang, G., & Pomeroy, J. W. (2020). Assessment of extremes in global precipitation products: How reliable are they? Journal of Hydrometeorology, 21(12), 2855-2873. https://doi.org/10.1175/JHM-D-20-0040.1

Scian, B. (2000). Episodios ENSO y su relación con las anomalías de precipitación en la pradera pampeana. Geoacta, 25, 23-40.

Scian, B., Labraga, J. C., Reimers, W., & Frumento, O. (2006). Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa Region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology, 85(1-2), 89-106.

Sellés-Martínez, J. (2001). Geología de la Ventania (Provincia de Buenos Aires (Argentina). Journal of Iberian Geology, 27, 43-69.

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56(1), 79-107. https://doi.org/10.1002/2017RG000574

Tomezzoli, R. N., & Cristallini, E. O. (2004). Secciones estructurales de Las Sierras Australes de la provincia de Buenos Aires: Repetición de la secuencia estratigráfica a partir de fallas inversas? Revista de la Asociación Geológica Argentina, 59(2), 330-340.

Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. US Department of Agriculture.

WMO. (2021). 2021 State of Climate Services: Water (WMO-No. 1278). https://library.wmo.int/idurl/4/57630

Xie, P., Chen, M., Yang, S., Yatagai, A., Hayasaka, T., Fukushima, Y., & Liu, C. (2007). A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorology, 8(3), 607-626. https://doi.org/https://doi.org/10.1175/JHM583.1

Zapperi, P., Casado, A., Gil, V., & Campo, A. M. (2006). Caracterización de las precipitaciones invernales en el Suroeste bonaerense. In N. Cazzaniga & M. Vaquero (Eds.), Ambiente natural, campo y ciudad: Estrategias de uso y conservación en el Sudoeste Bonaerense (pp. 63-68). Ediciones UNS.

Zapperi, P., Ramos, B., Gil, V., & Campo, A. M. (2007). Caracterización de las precipitaciones estivales en el Suroeste bonaerense. In Contribuciones Científicas (pp. 483-491). GAEA.

Descargas

Publicado

15-11-2024

Cómo citar

Casado, A. L., Berón de la Puente, F. J., & Gil, V. (2024). Series de precipitación global: implicancias para el estudio de eventos extremos en áreas serranas . FACENA, 34(2), 82–103. https://doi.org/10.30972/fac.3427735

Número

Sección

Artículos Científicos