Streptococcus uberis y su importancia como agente causal de la mastitis bovina

Autores/as

  • A. Stempler Universidad del Salvador. Facultad de Ciencias Agrarias y Veterinarias Universidad de Buenos Aires. Facultad de Ciencias Veterinarias
  • A. J. Muñoz Universidad del Salvador. Facultad de Ciencias Agrarias y Veterinarias Universidad de Buenos Aires. Facultad de Ciencias Veterinarias
  • M. F. Lucas Universidad del Salvador. Facultad de Ciencias Agrarias y Veterinarias

DOI:

https://doi.org/10.30972/vet.3326181

Palabras clave:

Streptococcus uberis, Mastitis bovina

Resumen

A nivel nacional e internacional, la prevalencia relativa de mastitis causada por Streptococcus uberis fue aumentando a lo largo del tiempo. S. uberis ha sido descripto como agente causal de mastitis bovina de origen ambiental, aunque se lo considera potencialmente contagioso. Los términos “cepas bien adaptadas” o “cepas poco adaptadas” al hospedador son utilizados para referirse a cepas contagiosas o ambientales, respectivamente. La incorporación de técnicas moleculares ha permitido caracterizar distintos perfiles genéticos de S. uberis como factores de virulencia asociados a su patogenicidad y en ese contexto, los genes SUAM y pauA demostraron un alto grado de conservación e inmunogenicidad. Aunque se identificaron diversos reservorios de S. uberis en el ambiente, las estrategias de prevención de este tipo de mastitis no solo se basan en la reducción de la exposición ambiental, sino que contemplan el riesgo de contagio durante el ordeño. En general los casos clínicos son tratados con antimicrobianos durante el período de lactancia, mientras que las mastitis subclínicas se combaten al momento del secado. Si bien se sabe que responden a la terapia local convencional, se ha probado que el uso de terapia extendida durante 5 a 8 días mejora significativamente los resultados en términos de cura bacteriológica. Existen reportes de resistencia a los antibióticos y aunque los niveles hallados para betalactámicos, fluoroquinolonas y macrólidos son relativamente bajos, a la fecha se ha detectado un incremento en la resistencia de S. uberis a tetraciclinas, llegando de niveles moderados a altos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Almeida RA, Luther DA, Park HM, Oliver SP. 2006. Identification, isolation, and partial characterization of a novel Streptococcus uberis adhesion molecule (SUA). Veterinary Microbiology 115: 1-3, 183-191.

Bartlett PC, Miller GY, Anderson CR, Kirk JH. 1990. Milk production and somatic cell count in Michigan dairy herds. J Dairy Sci 73: 10, 2794-2800.

Boireau C, Cazeau G, Jarrige N, Calavas D, Madec JY. 2018. Antimicrobial resistance in bacteria isolated from mastitis in dairy cattle in France, 2006-2016. J Dairy Sci 101: 10, 9451-9462.

Botrel MA et al. 2010. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog Dis 7: 5, 479-487.

Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ. 2007. Survey of the incidence rate and a etiology of mastitis on dairy farms in England and Wales. Vet Rec 160: 8, 253-257.

Bradley AJ, Green MJ. 2009. Factors affecting cure when treating bovine clinical mastitis with cephalosporin-based intra-mammary pre-parations. J Dairy Sci 92: 5, 1941-1953.

Bramley AJ. 1982. Sources of Streptococcus uberis in the dairy herd. I. Isolation from bovine faeces and from straw bedding of cattle. J Dairy Res 49: 3, 369-373.

Calvinho L, Vitulich CA, Zurbriggen MA, Canavesio VR, Tarabla HD. 1991. Prevalencia de microorganismos patógenos de la ubre en rodeos de la cuenca lechera santafesina. Therios 10: 188-196.

Calvinho L. 2017. Mastitis bovina: evolución del control en Argentina y nuevos horizontes de investigación. Disertación en la Academia Nacional de Agronomía y Veterinaria, Buenos Aires.

Calvinho L, Lucas M, Araujo L. 2017. Conceptos básicos sobre terapia antibiótica de la mastitis bovina. Recopilación Técnica. Programa argentino de calidad de leche (PACL), Secretaría de Agroindustria, Ministerio de Producción y Trabajo, p. 33-43.

Cha E et al. 2014. Optimal insemination and replacement decisions to minimize the cost of pathogen-specific clinical mastitis in dairy cows. J Dairy Sci 97: 4, 2101-2117.

Collado R, Montbrau C, Sitjà M, Prenafeta A. 2018. Study of the efficacy of a Streptococcus uberis mastitis vaccine against an experimental intra-mammary infection with a heterologous strain in dairy cows. J Dairy Sci 101: 11, 10290-10302.

Cullen GA, Little TW. 1969. Isolation of Streptococcus uberis from the rumen of cows and from soil. Vet Rec 85: 115-118.

DeJong A et al. 2018. Monitoring of antimicrobial susceptibility of udder pathogens recovered from cases of clinical mastitis in dairy cows across Europe: vet path results. Vet Microbiol 213: 73-81.

Fessia AS, Dieser SA, Odierno LM. 2018. Identificación de Streptococcus uberis aislados de muestras de leche bovina. Rev Científ FAV-UNRC 1: 1, 110-115.

Fessia AS, Dieser SA, Raspanti CG, Odierno LM. 2019. Genotyping and study of adherencerelated genes of Streptococcus uberis isolates from bovine mastitis. Microbl Pathog 130: 295-301.

Haenni M, Saras E, Chaussière S, Treilles M, Madec JY. 2011. ErmB-mediated erythromycin resistance in Streptococcus uberis from bovine mastitis. Vet J 189: 3, 356-358.

Haenni M, Lupo A, Madec JY. 2018. Antimicrobial resistance in Streptococcus spp. Microbiol Spectr 6: 2.

Halasa T, Huijps K, Østerås O, Hogeveen H. 2007. Economic effects of bovine mastitis and mastitis management: a review. Vet Q 29: 1, 18-31.

Hill AW, Leigh JA. 1989. DNA fingerprinting of Streptococcus uberis: a useful tool for epidemiology of bovine mastitis. Epidemiol Infec 103: 1, 165-171.

Hillerton JE, Berry EA. 2003. The management and treatment of environmental streptococcal mastitis. Vet Clin North Am Food Anim Pract 19: 1, 157-169.

Hogan J, Smith KL. 2003. Coliform mastitis. Vet Res 34: 507-519.

Hossain M et al. 2015. Virulence related sequences: insights provided by comparative genomics of Streptococcus uberis of differing virulence. BMC Genomics 16: 1, 334.

Jayarao BM, Doré JJ, Oliver SP. 1992. Restriction fragment length polymorphism analysis of 16-S ribosomal DNA of Streptococcus and Enterococcus species of bovine origin. J Clin Microbiol 30: 9, 2235-2240.

Jolley KA, Bray JE, Maiden MC. 2018. Openaccess bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3: 124.

Khan IU et al. 2003. Identification and epidemiological characterization of Streptococcus uberis isolated from bovine mastitis using conventional and molecular methods. J Vet Sci 4: 3, 213-214.

Lago A, Godden SM. 2018. Use of rapid culture systems to guide clinical mastitis treatment decisions. Vet Clin North Am Food Anim Pract 34: 3, 389-412.

Leelahapongsathon K et al. 2016. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections. J Dairy Sci 99: 2, 1418-1426.

Leigh JA. 1999. Streptococcus uberis: a permanent barrier to the control of bovine mastitis? Vet J 157: 3, 225-238.

Lucas M. 2009. Alternativas terapéuticas para el manejo racional de la mastitis subclínica por Staphylococcus aureus. Tesis. Dir: Mestorino, N.; Co-D: Errecalde, J. Cátedra de Farmacología y Toxicología, FCV, UNLP.

Lundberg Å et al. 2016. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. J Dairy Sci 99: 3, 2102-2117.

Martins L et al. 2021. Association between antimicrobial use and antimicrobial resistance of Streptococcus uberis causing clinical mastitis. J

Dairy Sci 104: 11, 12030–12041.

McDonald TJ, McDonald JS. 1976. Streptococci isolated from bovine intramammary infections. Am J Vet Res 37: 4, 377-381.

McDougall S. 2003. Intramammary treatment of clinical mastitis of dairy cows with a combination of lincomycin and neomycin, or penicillin and dihydrostreptomycin. N Z Vet J 51: 3, 111-116.

McDougall S, Arthur DG, Bryan MA, Vermunt JJ, Weir AM. 2007. Clinical and bacteriological response to treatment of clinical mastitis with one of three intra-mammary antibiotics. N Z Vet J 55: 4,161-170.

Milne MH, Barrett DC, Fitzpatrick JL, Biggs AM. 2002. Prevalence and etiology of clinical mastitis on dairy farms in Devon. Vet Rec 151: 8, 241-243.

Monistero V et al. 2021. Genotyping and antimicrobial susceptibility profiling of Streptococcus uberis isolated from a clinical bovine mastitis outbreak in a dairy farm. Antibiotics (Basel) 10: 6, 644.

Neave FK, Dodd FH, Kingwill RG, Westgarth DR. 1969. Control of mastitis in the dairy herd by hygiene and management. J Dairy Sci 52: 5, 696-707.

Odierno L et al. 2006. Conventional identification of Streptococcus uberis isolated from bovine mastitis in Argentinean dairy herds. J Dairy Sci 89: 10, 3886-3890.

Oliver SP, Lewis MJ, Ingle TL, Gillespie BE, Matthews KR. 1993. Prevention of bovine mastitis by a pre-milking teat disinfectant containing chlorous acid and chlorine dioxide. J Dairy Sci 76: 287-292.

Oliver SP, Gillespie BE, Jayarao BM. 1998. Detection of new and persistent Streptococcus uberis and Streptococcus dysgalactiae intramammary infections by polymer chain reactionbased DNA fingerprinting. FEMS Microbiol Lett 160: 1: 69-73.

Oliver SP et al. 1999. Evaluation of a postmilking teat disinfectant containing a phenolic combination for the prevention of mastitis in lactating dairy cows. J Food Prot 62: 11, 1354-1357.

Oliver SP et al. 2003. Efficacy of extended pirlimycin therapy for treatment of experimentally induced Streptococcus uberis intra-mammary

infections in lactating dairy cattle. Vet Ther 4: 3, 299-308.

PACL. 2017. Recopilación técnica. Programa Argentino de Calidad de Leche (PACL) p. 33-43. Secretaria de Agroindustria. Ministerio de Producción y Trabajo.

Paduch JH, Klocke D, Chao Y, Degen S, Krömker V. 2014. Identification of uncurable dairy cows on the basis of DHI-data. 39. Leipzig er Fortbil dungsveran staltung: Labordiagnostik in der Bestandsbetreuung. Leipzig, Germany. 2014: 19.

Pedersen LH et al. 2003. Early pathogenesis and inflammatory response in experimental bovine mastitis due to S. uberis. J Comp Pathol 128: 2-3, 156-164.

Perrig MS et al. 2015. Genotyping and study of the pau A and sua genes of Streptococcus uberis isolates from bovine mastitis. Rev Argent Microb 47: 4, :282-294.

Perrig MS et al. 2017. Assessment of the potential utility of different regions of Streptococcus uberis adhesion molecule (SUA) for mastitis subunit vaccine development. Microb Pathog 105: 273-279.

Petrovski KR, Williamson NB, Lopez VN, Parkinson TJ, Tucker IG. 2011. Culture results from milk samples submitted to veterinary diagnostic laboratories from August 2003 to December 2006 in New Zealand. N Z Vet J 59: 6, 317-322.

Petrovski KR et al. 2015. Susceptibility to antimicrobials of mastitis-causing Staphylococcus aureus, S. uberis and S. dysgalactiae from New Zealand and the USA as assessed by the disk diffusion test. Aust Vet J 93: 7, 227-233.

Phuektes P et al. 2020. Molecular epidemiology of Streptococcus uberis isolates from dairy cows with mastitis. J Clin Microbiol 39: 4, 1460-1466.

Pinzón SC, Ruegg PL. 2011. Risk factors associated with short-term post-treatment outcomes of clinical mastitis. J Dairy Sci 94: 7, 3397-3410.

Pol M, Ruegg PL. 2007. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms. J Dairy Sci 90: 1, 249-261.

Poutrel B, Bareille S, Lequeux G, Leboeuf F. 2018. Prevalence of mastitis pathogens in France: antimicrobial susceptibility of Staphylococcus aureus, Streptococcus uberis and Escherichia coli. J Vet Sci Technol 9: 2.

Pullinger GD, Coffey TJ, Maiden MC, Leigh JA. 2007. Multilocus-sequence typing analysis reveals similar populations of Streptococcus uberis are responsible for bovine intra-mammary infections of short and long duration. Vet Microbiol 119: 2-4, 194-204.

Pyörala S. 2009. Treatment of mastitis during lactation. Ir Vet J 62: Suppl. 4, S40-44.

Raemy A et al. 2013. Phenotypic and genotypic identification of streptococci and related bacteria isolated from bovine infections. Acta Vet Scand 55: 1, 53.

Saini V et al. 2012. Antimicrobial use on Canadian dairy farms. J Dairy Sci 95: 3, 1209-1221.

Sampimon O, Barkema HW, Berends I, Sol J, Lam T. 2009. Prevalence of intramammary infection in Dutch dairy herds. J Dairy Res 76: 2, 129-136.

Samson O, Gaudout N, Schmitt E, Schukken YH, Zadoks R. 2016. Use of on-farm data to guide treatment and control mastitis caused by Streptococcus uberis. J Dairy Sci 99: 9, 7690-7699.

Tassi R et al. 2013. Strain-specific pathogenicity of putative host-adapted and non-adapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96: 8, 5129-5145.

Thomas LH, Haider W, Hill AW, Cook RS. 1994. Pathologic findings of experimentally induced Streptococcus uberis infection in the mammary gland of cows. Am J Vet Res 55: 12, 1723-1728.

Thomas V et al. 2015. Antimicrobial susceptibility monitoring of mastitis pathogens isolated from acute cases of clinical mastitis in dairy cows across Europe: Vet Path results. Int J Anti-microb Agents 46: 1, 13-20.

Tian XY et al. 2019. Antimicrobial resistance and virulence genes of Streptococcus isolated from dairy cows with mastitis in China. Microb Pathog 131: 33-39.

Todhunter DA, Smith KL, Hogan JS. 1995. Environmental streptococcal intra mammary infections of the bovine mammary gland. J Dairy Sci 78: 2366-2374.

Tomazi T et al. 2019. Genotyping and antimicrobial resistance of Streptococcus uberis isolated from bovine clinical mastitis. Plo Sone 14: 10, e0223719.

Verbeke J, Piepers S, Supré K, Devliegher S. 2014. Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. J Dairy Sci 97: 11, 6926-6934.

Vezina B et al. 2021. Sequence characterisation and novel insights into bovine mastitis-associated Streptococcus uberis in dairy herds. Sci Rep 11: 1, 3046.

Vissio C, Agüeroa D, Raspantib C, Odiernob L, Larriestra A. 2015. Productive and economic daily losses due to mastitis and its control expenditures in dairy farms in Córdoba, Argentina. Arch Med Vet 47: 1, 7-14.

Wang SM, Deighton MA, Capstick JA, Gerraty N. 1999. Epidemiological typing of bovine streptococci by pulsed-field gel electrophoresis. Epidem Infect 123: 2, 317-324.

Wieliczko RJ, Williamson JH, Cursons RT, Lacy SJ, Woolford MW. 2002. Molecular typing of Streptococcus uberis strains isolated from cases of bovine mastitis. J Dairy Sci 85: 9, 2149-2154.

Zadoks RN et al. 2001. Analysis of an outbreak of Streptococcus uberis mastitis. J Dairy Sci 84: 3, 590-599.

Zadoks RN et al. 2003. Clinical, epidemiological, and molecular characteristics of Streptococcus uberis infections in dairy herds. Epidemiol Infect 130: 2, 335-349.

Zadoks RN. 2007. Sources and epidemiology of Streptococcus uberis, with special emphasis on mastitis in dairy cattle. CAB Reviews Perspectives in Agriculture Veterinary Science, Nutrition and Natural Resources 2: 30.

Descargas

Publicado

2022-12-26

Cómo citar

Stempler, A., Muñoz, A. J., & Lucas, M. F. (2022). Streptococcus uberis y su importancia como agente causal de la mastitis bovina. Revista Veterinaria, 33(2), 192–201. https://doi.org/10.30972/vet.3326181

Número

Sección

Trabajos de Investigación