Interpretación de los gases arteriales en caninos con patologías respiratorias

Autores/as

DOI:

https://doi.org/10.30972/vet.3517485

Palabras clave:

PaO2, PaCO2, oxigenación y ventilación, perros

Resumen

La medición de gases arteriales es una herramienta diagnóstica útil para evaluar la función pulmonar respecto del intercambio de oxígeno y dióxido de carbono entre alvéolos y capilares sanguíneos, por tanto, es fundamental en el abordaje del paciente canino con disfunción respiratoria. La interpretación de la presión arterial de oxígeno y la presión arterial de dióxido de carbono permiten la identificación de fallas en la oxigenación y ventilación. Para estimar el mecanismo que subyace a la hipoxia y por tanto el pronóstico de la condición, el gradiente alvéolo-arterial se debe calcular, preferiblemente previo a la terapia con oxígeno; mientras que para evaluar el grado de severidad de la disfunción pulmonar en un paciente sometido a fracciones inspiradas de oxígeno superiores a 21%, así como la respuesta a la oxigenoterapia, es útil monitorear el radio PaO2/FiO2. Los radios SaO2/FiO2 y SpO2/FiO2 son recursos diagnósticos que actualmente se están investigando como indicadores de falla en la oxigenación con resultados preliminares prometedores en caninos. Esta revisión pretende presentar de forma concisa, la aplicación actual de dichos indicadores en la evaluación de la función pulmonar en los caninos con patologías primarias o secundarias del tracto respiratorio.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bach JF. Hypoxemia: A Quick Reference. Vet. Clin. North Am. Small Anim. Pract. 2008; 38(3): 423-426.

Balakrishnan A, Tong CW. Clinical Application of Pulmonary Function Testing in Small Animals. Vet. Clin. North Am. - Small Anim. Pract. 2020; 50(2): 273-294.

Bateman SW. Making Sense of Blood Gas Results. Vet. Clin. North Am. Small Anim. Pract. 2008; 38(3): 543-557.

Bergeron MF, Bahr R, Bärtsch P, Bourdon L, Calbet AL, Carlsen KH, Castagna O, González-Alonso J, Lundby C, Maughan RJ, Millet G, Mountjoy M, Racinais S, Rasmussen P, Singh DG, Subudhi AW, Young AJ, Soligard T, Engebretsen L. International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. Br. J. Sports Med. 2012; 46(11): 770-779.

Bilan N, Dastranji A, Ghalehgolab Behbahani A. Comparison of the SpO2/FiO2 Ratio and the Pao2/Fio2 Ratio in Patients With Acute Lung Injury or Acute Respiratory Distress Syndrome. J. Cardiovasc. Thorac. Res. 2015; 7(1): 28-31.

Calabro JM, Prittie JE, Palma DAD. Preliminary evaluation of the utility of comparing SpO2/FiO2and PaO2/FiO2 ratios in dogs. J. Vet. Emerg. Crit. Care. 2013; 23(3): 280-285.

Carver A, Bragg R, Sullivan L. Evaluation of PaO2/FiO2 and SaO2/FiO2 ratios in postoperative dogs recovering on room air or nasal oxygen insufflation. J. Vet. Emerg. Crit. Care. 2016; 26(3): 437-445.

Ceccherini G, Lippi I, Citi S, Perondi F, Pamapanini M, Guidi G, A and Briganti A. Continuous positive airway pressure (CPAP) provision with a pediatric helmet for treatment of hypoxemic acute respiratory failure in dogs. J. Vet. Emerg. Crit. Care. 2020; 30(1): 41-49.

Collins JA, Rudenski A, Gibson J, Howard L, O’Driscoll R. Relating oxygen partial pressure, saturation and content: The haemoglobin–oxygen dissociation curve. Breathe. 2015; 11(3): 194-201.

Dalmau EA, Díaz C. Valores de electrolitos, gases sanguíneos, nitrógeno ureico y glucosa en sangre venosa de caninos, ubicados a 2.600 msnm. Rev. Med. Vet. 2008; 1(16): 53-61.

Dalmau EA, Venegas CA, Trujillo CA. Estatus ácido-base: Conceptos, desequilibrios e interpretación. Univ. La Salle; 2014.

Davis C, Hackett P. Advances in the Prevention and Treatment of High Altitude Illness. Emerg. Med. Clin. North Am. 2017; 35(2): 241-260.

Day TK. Blood gas analysis. Vet. Clin. North Am. Small Anim. Pract. 2002; 32(5): 1031-1048.

DiBartola SP. Metabolic acid-base disorders. En: Fluid Therapy in Small Animal Practice. 2nd ed. Elsevier Saunders; 2012: 253-286.

Fairman NB. Evaluation of Pulse Oximetry as a Continuous Monitoring Technique in Critically Ill Dogs in the Small Animal Intensive Care Unit. J. Vet. Emerg. Crit. Care. 1992; 2(2): 50-56.

Farrell KS, Hopper K Cagle LA, Epstein SE. Evaluation of pulse oximetry as a surrogate for PaO2 in awake dogs breathing room air and anesthetized dogs on mechanical ventilation. J. Vet. Emerg. Crit. Care. 2018; 29(6): 622-629.

Gonzalez AL, Waddell LS. Blood Gas Analyzers. Top Companion Anim. Med. 2016; 31(1): 27-34.

Harris D, Massie M. Role of Alveolar-Arterial Gradient in Partial Pressure of Oxygen and PaO2/Fraction of Inspired Oxygen Ratio Measurements in Assessment of Pulmonary Dysfunction. AANA J. 2019; 87(3): 214-221.

Haskins S. Monitoring the critically ill patient. Vet. Clin. North Am. Small Anim. Pract. 1989; 19(6): 1059-1078.

Haskins S. Interpretation of blood gas measurements. En: Textbook of Respiratory Disease in Dogs and Cats. 1st ed. Elsevier Saunders; 2004: 181-193.

Haskins S, Pascoe PJ, Ilkiw JE, Fudge J, Hopper K, Aldrich J. Reference cardiopulmonary values in normal dogs. Comp. Med. 2005; 55(2): 156-161.

Hopper K, Powell LL. Basics of mechanical ventilation for dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 2013; 43(4): 955-969.

Hopper K. Respiratory Acid–Base Disorders in the Critical Care Unit. Vet. Clin. North Am. Small Anim. Pract. 2017; 47(2): 351-357.

Hsia CC, Johnson RL, McDonough P, Dane DM, Hurst MD, Fehmel JL, Wagner HE, Wagner PD. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J. Appl. Physiol. 2007; 102(4): 1448-1455.

Ilkiw JE, Rose RJ, Martin ICA. A Comparison of Simultaneously Collected Arterial, Mixed Venous, Jugular Venous and Cephalic Venous Blood Samples in the Assessment of Blood‐Gas and Acid‐Base Status in the Dog. J. Vet. Intern. Med. 1991; 5(5): 294-298.

Irfan M. Interpretation of Arterial Blood Gases and Pleural Fluid Results. En: Hands‐on Guid to Clin Reason Med. John Wiley & Sons. 2019: 26-29.

Jensen FB. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport. Acta Physiol. Scand. 2004; 182(3): 215-227.

Jibaja M, Ortiz-Ruiz G, García F, Garay-Fernández M, de Jesús Montelongo F, Martinez J, Viruez JA, Baez-Pravia O, Salazar S, Villacorta-Cordova F, Morales F, Tinoco-Solórzano A, Ibañez Guzmán C, Valle Pinheiro B, Zubia-Olaskoaga F, Dueñas C, Garcia AL, Cardinal-Fernández P. Hospital Mortality and Effect of Adjusting PaO2/FiO2 According to Altitude Above the Sea Level in Acclimatized Patients Undergoing Invasive Mechanical Ventilation. A Multicenter Study. Arch. Bronconeumol. 2020; 56(4): 218-224.

Johnson RA(a). Respiratory Alkalosis: A Quick Reference. Vet. Clin. North Am. Small Anim. Pract. 2008; 38(3): 427-430.

Johnson RA(b). Respiratory Acidosis: A Quick Reference. Vet. Clin. North Am. Small Anim. Pract. 2008; 38(3): 431-434.

Kadwa AR, Boustead KJ, Zeiler GE. Agreement between arterial and central venous blood pH and its contributing variables in anaesthetized dogs with respiratory acidosis. Vet. Anaesth. Analg. 2022; 49(3): 299-303.

Kirberger RM, Leisewitz AL, Rautenbach Y, Lim CK, Stander N, Cassel N, Arnot L, deClercq M, Burchell R. Association between computed tomographic thoracic injury scores and blood gas and acid–base balance in dogs with blunt thoracic trauma. J. Vet. Emerg. Crit. Care. 2019; 29(4): 373-384.

Malte H, Lykkeboe G, Wang T. The magnitude of the Bohr effect profoundly influences the shape and position of the blood oxygen equilibrium curve. Comp. Biochem. Physiol. Part. A. Mol. Integr. Physiol. 2021; 254: 110880.

Manning AM. Oxygen therapy and toxicity. Crit. Care. 2002; 32(5): 1005-20.

Miller CJ. Approach to the Respiratory Patient. Vet. Clin. North Am. Small Anim. Pract. 2007; 37(5): 861-878.

Mirabile V, Shebl E, Sankari A, Burns B. Respiratory Failure. StatPearls Publishing. Treasure Island. 2023.

Montes de Oca M, Xochiltl Padua M, Olvera C, Granillo J. Ajuste de la relacion PaO2/FiO2 a la presion barometrica: Presión barométrica-PaO2/FiO2. Rev. la Asoc. Mex. Med. Crit. y Ter. intensiva. 2010; XXVI(1): 8-12.

Pelt DRV, Wingfield WE, Wheeler SL, Salman MD. Oxygen‐Tension Based Indices as Predictors of Survival in Critically III Dogs: Clinical Observations and Review. J. Vet. Emerg. Crit. Care. 1991; 1(1): 19-25.

Petersson J, Glenny RW. Gas exchange and ventilation-perfusion relationships in the lung. Eur. Respir. J. 2014; 44(4): 1023-1041.

Pereira-Neto GB, Brunetto MA, Oba PM, Champion T, Villaverde C, Vendramini THA, Balieiro JCC, Carciofi AC, Camacho AA. Weight loss improves arterial blood gases and respiratory parameters in obese dogs. J. Anim. Physiol. Anim. Nutr. 2018; 102(6): 1743-1748.

Pérez-Padilla JR. Altitude, the Ratio of PaO2 to Fraction of Inspired Oxygen, and Shunt: Impact on the Assessment of Acute Lung Injury. Arch. Bronconeumol. 2004; 40(10): 459-462.

Proulx J. Respiratory monitoring: arterial blood gas analysis, pulse oximetry, and end-tidal carbon dioxide analysis. Clin. Tech. Small Anim. Pract. 1999; 14(4): 227-230.

Ravikumar P, Bellotto DJ, Johnson RL, Hsia CCW. Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation. J. Appl. Physiol. 2009; 107(6): 1911-1917.

Reminga C, King LG. Oxygenation and ventilation. En: Monitoring and Intervention for the Critically Ill Small Animal. John Wiley & Sons. 2016: 109-136.

Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. Comparison of the SpO2/FIO2 ratio and the PaO 2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007; 132(2): 410-417.

Rieser TM. Arterial and Venous Blood Gas Analyses. Top. Companion Anim. Med. 2013; (3): 86-90.

Robinson E(a). Overview of Respiratory Function: Ventilation of the Lungs. En: Klein BG, ed. Cunningham’s Textbook of Veterinary Physiology. 5th ed. Elsevier Saunders; 2012: 495-505.

Robinson E(b). Control of Ventilation. En: Klein BG, ed. Cunningham’s Textbook of Veterinary Physiology. 5th ed. Elsevier Saunders; 2012: 430-535.

Robinson E(c). Pulmonary Blood Flow. En: Klein BG, ed. Cunningham’s Textbook of Veterinary Physiology. 5th ed. Elsevier Saunders; 2012: 506-512.

Rozanski E. Blood Gases. En: Vaden S, Knoll J, Smith F, Tilley L, eds. Blackwell’s Five-Minute Veterinary Consult: Laboratory Tests and Diagnostic Procedures: Canine and Feline. Wiley-Blackwell. 2009: 101-103.

Rozanski E. Oxygenation and Ventilation. Vet. Clin. North Am. Small Anim. Pract. 2015; 45(5): 931-940.

Sarkar M, Niranjan N, Banyal PK. Mechanisms of hypoxemia. Lung India. 2017; 34(1): 47-60.

Trujillo CA, Dalmau EA, Venegas CA, Díaz CA. Valores de referencia de gases arteriales y de electrolitos en caninos de la sabana de Bogotá. Rev. Med. Vet. 2014; 1(27): 59-71.

Waddell LS(a). The Practitioner’s acid-base Primer: obtaining & interpreting Blood Gases. Today´s Vet. Pract. 2013: 43-47.

Waddell LS(b). The practitioner’s acid-base primer: differential diagnoses & treatment. Today’s Vet. Pract. 2013; 3(6): 25-30.

Wall RE. Respiratory acid-base disorders. Vet. Clin. North Am. Small Anim. Pract. 2001; 31(6): 1355-1367.

West JB, Wagner PD. Predicted gas exchange on the summit of Mt. Everest. Respir. Physiol. 1980; 42(1): 1-16.

Wilkins PA, Otto CM, Baumgardner JE, Dunkel B, Bedenice D, Paradise MR, Staffierri F, Syring RS, Slack J, Grasso S, Pranso G. Acute lung injury and acute respiratory distress syndromes in veterinary medicine: Consensus definitions: The Dorothy Russell Havemeyer Working Group on ALI and ARDS in Veterinary Medicine: State-of-the-Art Review. J. Vet. Emerg. Crit. Care. 2007; 17(4): 333-339.

Descargas

Publicado

2024-05-15

Cómo citar

Bermúdez-Duarte, P. M., & Dalmau-Barros, E. A. (2024). Interpretación de los gases arteriales en caninos con patologías respiratorias. Revista Veterinaria, 35(1), 79–92. https://doi.org/10.30972/vet.3517485

Número

Sección

Revisiones Bibliográficas