Inclusión de harina de larvas de Mosca Soldado Negra (Hermetia illucens) en la nutrición de peces y crustáceos
DOI:
https://doi.org/10.30972/vet.3517487Palabras clave:
Mosca Soldado Negra, Hermetia illucens, harina de insecto, acuicultura, sostenibilidad, seguridad alimentariaResumen
El crecimiento de la industria acuícola ha sido impulsado por la creciente demanda global de alimentos y la preocupación por la sobreexplotación de recursos naturales y el impacto ambiental. Para abordar estos desafíos, la acuicultura ha buscado alternativas sostenibles e innovadoras. En este contexto, la inclusión de insectos, como la Mosca Soldado Negra (Hermetia illucens), en la dieta de peces y crustáceos surge como una solución prometedora debido a su alto contenido de proteínas, lípidos y minerales. Este artículo de revisión analiza el papel de la harina de larvas de Mosca Soldado Negra en la acuicultura. Examina los beneficios económicos, nutricionales y ambientales de la harina en la dieta de los animales acuáticos, así como los resultados de investigaciones recientes sobre dosificación adecuada, calidad de crecimiento, salud intestinal y disponibilidad de nutrientes en diversas especies acuícolas. Se enfatiza que la harina de larvas de la Mosca Soldado Negra ofrece beneficios nutricionales comparables a la harina de pescado, siendo una fuente rica en proteínas y lípidos, y su inclusión en la dieta de especies acuáticas como peces y crustáceos ha demostrado mejoras en el crecimiento, la salud intestinal y la calidad de los productos finales. A pesar de estas ventajas, se señala que la sustitución completa de la harina de pescado por la harina de insectos no es la solución definitiva, ya que pueden surgir desafíos relacionados con la regulación, la crianza masiva de insectos y la composición de nutrientes. Sin embargo, la harina de larvas de Mosca Soldado Negra se destaca como una alternativa valiosa para diversificar y mejorar la sostenibilidad de la alimentación en la industria acuícola, contribuyendo a la seguridad alimentaria y al cuidado del medio ambiente.
Descargas
Citas
Abdel-Tawwab M, Khalil RH, Metwally AA, Shakweer MS, Khallaf MA, Abdel-Latif H M. Effects of black soldier fly (Hermetia illucens L.) larvae meal on growth performance, organs-somatic indices, body composition, and hemato-biochemical variables of European sea bass, Dicentrarchus labrax. Aquaculture. 2020; 522: 735136.
Agbohessou PS, Mandiki R, Gougbédji A, Megido RC, Lima LMW, Cornet V ... , Kestemont P. Efficiency of fatty acid-enriched dipteran-based meal on husbandry, digestive activity and immunological responses of Nile tilapia Oreochromis niloticus juveniles. Aquaculture. 2021; 545: 737193.
Alfiko Y, Xie D, Astuti RT, Wong J, Wang L. Insects as a feed ingredient for fish culture: Status and trends. Aquacult. Fish. 2022; 7(2):166-78.
Ambrosi V, Caporaletti D, Fernandez-Arhex V, Gallardo G, Lilllo MI, Luna A ... , Polenta G. Producción de insectos para consumo humano. Descripción de procesos y perfil de riesgo. 2021: ISSN 26182785. Red Segur. Aliment. CONICET.
Ameixa OM, Duarte PM, Rodrigues DP. Insects, food security, and sustainable aquaculture. Springer Int. Publ. 2020; pp. 425-435.
Avendaño C, Sánchez M, Valenzuela C. Insectos: son realmente una alternativa para la alimentación de animales y humanos. Rev. Chil. Nutr. 2020; 47(6): 1029-1037.
Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquaculture. 2014; 422: 193-201.
Barroso FG, Sánchez-Muros MJ, Segura M, Morote E, Torres A, Ramos R, Guil JL. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J. Food Compos. Anal. 2017; 62: 8-13.
Barroso FG, Sánchez-Muros MJ, Rincón MÁ, Rodriguez-Rodriguez M, Fabrikov D, Morote E, Guil-Guerrero JL. Production of n-3-rich insects by bioaccumulation of fishery waste. J. Food Compos. Anal. 2019; 82: 103237.
Becker PM, Yu, P. What makes protein indigestible from tissue‐related, cellular, and molecular aspects?. Mol. Nutr. Food Res. 2013; 57(10): 1695-1707.
Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, ... Lock EJ. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture. 2019; 503: 609-619.
Belghit I, Liland NS, Waagbø R, Biancarosa I, Pelusio N, Li Y, ... Lock EJ. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture. 2018; 491: 72-81.
Borel P, Hammaz F, Morand-Laffargue L, Creton B, Halimi C, Sabatier D, Desmarchelier C. Using black soldier fly larvae reared on fruits and vegetables waste as a sustainable dietary source of provitamin a carotenoids. Food Chem. 2021; 359: 129911.
Bruni L, Pastorelli R, Viti C, Gasco L, Parisi G. Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (Black Soldier Fly) partially defatted larva meal as partial dietary protein source. Aquaculture. 2018; 487: 56-63.
Bruni L, Belghit I, Lock EJ, Secci G, Taiti C, Parisi G. Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric. 2020; 100(3): 1038-1047.
Bußler S, Rumpold BA, Jander E, Rawel HM, Schlüter OK. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon. 2016; 2(12): e00218.
Caimi C, Biasato I, Chemello G, Oddon SB, Lussiana C, Malfatto VM, Gasco L. Dietary inclusion of a partially defatted black soldier fly (Hermetia illucens) larva meal in low fishmeal-based diets for rainbow trout (Oncorhynchus mykiss). J. Anim. Sci. Biotechnol. 2021; 12: 1-15.
Commission Regulation (EU). Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. EUR-Lex. 2017.
Cummins JVC, Rawles SD, Thompson KR, Velasquez A, Kobayashi Y, Hager J, Webster CD. Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei). Aquaculture. 2017; 473: 337-344.
Danieli PP, Lussiana C, Gasco L, Amici A, Ronchi B. The effects of diet formulation on the yield, proximate composition, and fatty acid profile of the black soldier fly (Hermetia illucens L.) prepupae intended for animal feed. Animals. 2019; 9(4): 178.
Diener S, Zurbrügg C, Tockner K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag. Res. 2009; 27(6): 603-610.
Dietz C, Liebert F. Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus)?. Aquaculture Rep. 2018; 12: 43-48.
Dumas A, Raggi T, Barkhouse J, Lewis E, Weltzien E. The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2018; 492: 24-34.
Ewald N, Vidakovic A, Langeland M, Kiessling A, Sampels S, Lalander C. Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Manag. 2020; 102: 40-47.
FAO. El estado mundial de la pesca y la acuicultura. Roma. 2012; pp. 231.
FAO. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma. 2020; pp. 243.
Fisher HJ, Collins SA, Hanson C, Mason B, Colombo SM, Anderson DM. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture. 2020; 521: 734978.
Freccia A, Tubin JSB, Rombenso AN, Emerenciano MGC. Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality?. Emerg. Technol. Environ. Res. Sustain. Aquaculture. 2020; 23: 1-14.
Foysal MJ, Gupta SK. A systematic meta-analysis reveals enrichment of Actinobacteria and Firmicutes in the fish gut in response to black soldier fly (Hermetia illucens) meal-based diets. Aquaculture. 2022; 549: 737760.
Froehlich HE, Gentry RR, Halpern BS. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2018; 2(11): 1745-1750.
German Federal Institute for Risk Assessment (BfR), National Reference Laboratory for Animal protein in Feed, NRL‐AP, Garino C, Zagon J., Braeuning A. Insects in food and feed–allergenicity risk assessment and analytical detection. EFSA J. 2019; 17, e170907.
Giannetto A, Oliva S, Lanes CFC, de Araújo Pedron F, Savastano D, Baviera C, ... Fasulo S. Hermetia illucens (Diptera: Stratiomyidae) larvae and prepupae: biomass production, fatty acid profile and expression of key genes involved in lipid metabolism. J. Biotechnol. 2020; 307: 44-54.
Glencross BD. A feed is still only as good as its ingredients: An update on the nutritional research strategies for the optimal evaluation of ingredients for aquaculture feeds. Aquaculture Nutrition, 2020; 26(6): 1871-1883.
Godfray HCJ, Crute IR, Haddad L, Lawrence D, Muir JF, Nisbett N, ... Whiteley R. The future of the global food system. Philos. Trans. R. Soc. B Biol. Sci. 2010; 365(1554): 2769-2777.
Guerreiro I, Serra CR, Coutinho F, Couto A, Castro C, Rangel F, ... Enes P. Digestive enzyme activity and nutrient digestibility in meagre (Argyrosomus regius) fed increasing levels of black soldier fly meal (Hermetia illucens). Aquaculture Nutr. 2021; 27(1): 142-152.
Hender A, Siddik MA, Howieson J, Fotedar R. Black soldier fly, Hermetia illucens as an alternative to fishmeal protein and fish oil: impact on growth, immune response, mucosal barrier status, and flesh quality of juvenile barramundi, lates calcarifer (Bloch, 1790). Biology. 2021; 10(6): 505.
Henry M, Gasco L, Piccolo G, Fountoulaki E. Review on the use of insects in the diet of farmed fish: past and future. Anim. Feed Sci. Technol. 2015; 203: 1-22.
Hoc B, Genva M, Fauconnier ML, Lognay G, Francis F, Caparros Megido R. About lipid metabolism in Hermetia illucens (L. 1758): on the origin of fatty acids in prepupae. Sci. Rep. 2020; 10(1): 11916.
Hoffmann L, Rawski M, Pruszyńska-Oszmałek E, Kołodziejski P, Mazurkiewicz J. Environmentally sustainable feeding system for sea trout (Salmo trutta m. trutta): Live food and insect meal-based diets in larval rearing. Aquaculture Rep. 2021; 21: 100795.
Hua K, Cobcroft JM, Cole A, Condon K, Jerry DR, Mangott A, ... Strugnell JM. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth. 2019; 1(3): 316-329.
Hwang D, Lim CH, Lee SH, Goo TW, Yun EY. Effect of feed containing Hermetia illucens larvae immunized by Lactobacillus plantarum injection on the growth and immunity of rainbow trout (Oncorhynchus mykiss). Insects. 2021; 12(9): 801.
Infante‐Villamil S, Huerlimann R, Jerry DR. Microbiome diversity and dysbiosis in aquaculture. Rev. Aquacult. 2021; 13(2): 1077-1096.
Jannathulla R, Rajaram V, Kalanjiam R, Ambasankar K, Muralidhar M, Dayal JS. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquaculture Res. 2019; 50(12): 3493-3506.
Khieokhajonkhet A, Uanlam P, Ruttarattanamongkol K, Aeksiri N, Tatsapong P, Kaneko G. Replacement of fish meal by black soldier fly larvae meal in diet for goldfish Carassius auratus: Growth performance, hematology, histology, total carotenoids, and coloration. Aquaculture. 2022; 561: 738618.
Kokou F, Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture. 2018; 495: 295-310.
Koutsos L, McComb A, Finke M. Insect composition and uses in animal feeding applications: a brief review. Ann. Entomol. Soc. Am. 2019; 112(6): 544-551.
Kroeckel S, Harjes AG, Roth I, Katz H, Wuertz S, Susenbeth A, Schulz C. When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute-Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture. 2012; 364: 345-352.
Kumar V, Fawole FJ, Romano N, Hossain MS, Labh SN, Overturf K, Small BC. Insect (black soldier fly, Hermetia illucens) meal supplementation prevents the soybean meal-induced intestinal enteritis in rainbow trout and health benefits of using insect oil. Fish Shellfish Immunol. 2021; 109: 116-124.
Lanes CF, Pedron FA, Bergamin GT, Bitencourt AL, Dorneles BE, Villanova JC, ... Giannetto, A. Black Soldier Fly (Hermetia illucens) larvae and prepupae defatted meals in diets for zebrafish (Danio rerio). Animals. 2021; 11(3): 720.
Lawal KG, Kavle RR, Akanbi TO, Mirosa M, Agyei D. Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Future Foods. 2021; 3: 100016.
Leeper A, Benhaïm D, Smárason BÖ, Knobloch S, Òmarsson KL, Bonnafoux T, ... Øverland, M. Feeding black soldier fly larvae (Hermetia illucens) reared on organic rest streams alters gut characteristics of Atlantic salmon (Salmo salar). J. Insects Food Feed. 2022; 8(11): 1355-1372.
Li S, Ji H, Zhang B, Zhou J, Yu H. Defatted black soldier fly (Hermetia illucens) larvae meal in diets for juvenile Jian carp (Cyprinus carpio var. Jian): Growth performance, antioxidant enzyme activities, digestive enzyme activities, intestine and hepatopancreas histological structure. Aquaculture. 2017; 477: 62-70.
Li Y, Kortner TM, Chikwati EM, Munang’andu HM, Lock EJ, Krogdahl Å. Gut health and vaccination response in pre-smolt Atlantic salmon (Salmo salar) fed black soldier fly (Hermetia illucens) larvae meal. Fish Shellfish Immunol. 2019; 86:1106-1113.
Liland NS, Biancarosa I, Araujo P, Biemans D, Bruckner CG, Waagbø R, ... Lock EJ. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PloS one. 2017; 12(8): e0183188.
Lock ER, Arsiwalla T, Waagbø R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquaculture Nutr. 2016; 22(6): 1202-1213.
Lu R, Chen Y, Yu W, Lin M, Yang G, Qin C, ... Nie G. Defatted black soldier fly (Hermetia illucens) larvae meal can replace soybean meal in juvenile grass carp (Ctenopharyngodon idellus) diets. Aquaculture Reports. 2020; 18: 100520.
Llagostera PF, Kallas Z, Reig L, De Gea DA. The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. J. Clean. Prod. 2019; 229: 10-21.
Magalhães R, Sánchez-López A, Leal RS, Martínez-Llorens S, Oliva-Teles A, Peres H. Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture. 2017; 476: 79-85.
Makkar HP, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014; 197: 1-33.
Marusich E, Mohamed H, Afanasev Y, Leonov S. Fatty acids from Hermetia illucens larvae fat inhibit the proliferation and growth of actual phytopathogens. Microorganisms. 2020; 8(9): 1423.
Meneguz M, Schiavone A, Gai F, Dama A, Lussiana C, Renna M, Gasco L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018; 98(15): 5776-5784.
Mikołajczak Z, Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D. The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals. 2020; 10(6): 1031.
Mo WY, Man YB, Wong MH. Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ. 2018; 613: 635-643.
Mohamed H, Marusich E, Afanasev Y, Leonov S. Fatty Acids-Enriched Fractions of Hermetia illucens (Black Soldier Fly) Larvae Fat Can Combat MDR Pathogenic Fish Bacteria Aeromonas spp. Int. J. Mol. Sci. 2021; 22(16): 8829.
Mohan K, Rajan DK, Muralisankar T, Ganesan AR, Sathishkumar P, Revathi N. Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture. 2022; 553: 738095.
Monteiro dos Santos DK, Santana TM, de Matos Dantas F, Farias AB, Epifânio CMF, Prestes AG., ... Gonçalves LU. Defatted black soldier fly larvae meal as a dietary ingredient for tambaqui (Colossoma macropomum): Digestibility, growth performance, haematological parameters, and carcass composition. Aquaculture Res. 2022; 53(18): 6762-6770.
Nairuti RN, Musyoka SN, Yegon MJ, Opiyo MA. Utilization of black soldier fly (Hermetia illucens Linnaeus) larvae as a protein source for fish feed–a review. Aquaculture Stud. 2021; 22(2): AQUAST697.
Naylor RL, Hardy RW, Buschmann AH, Bush SR, Cao L, Klinger DH, ... Troell M. A 20-year retrospective review of global aquaculture. Nature. 2021; 591(7851): 551-563.
Nogales‐Mérida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek K, Rawski M, ... Józefiak A. Insect meals in fish nutrition. Rev. Aquacult. 2019; 11(4): 1080-1103.
NRC (National Research Council). Nutrient Requirements of Fish and Shrimp. Board on Agriculture and Natural Resources Division on Earth and Life Studies. Washington, D.C. 2011; pp. 376.
Ordoñez BM, Santana TM, Carneiro DP, dos Santos DK, Parra GA, Moreno LC., ... Gonçalves LU. Whole black soldier fly larvae (Hermetia illucens) as dietary replacement of extruded feed for tambaqui (Colossoma macropomum) juveniles. Aquaculture J. 2022; 2(4): 246-256.
Pradeepkiran JA. Aquaculture role in global food security with nutritional value: a review. Transl. Anim. Sci. 2019; 3(2): 903-910.
Prakoso VA, Irawan A, Iswantari A, Maulana F, Samsudin R, Jayanegara A. Evaluation of dietary inclusion of black soldier fly (Hermetia illucens) larvae on fish production performance: a meta-analysis. J. Insects Food Feed. 2022; 8(11): 1373-1384.
Ramos-Lazo DI. Producción y valoración nutricional de harina de larva de Tenebrio molitor como fuente proteica no tradicional para su uso en la alimentación animal. Tesis para optar al título profesional de Médico Veterinario y Zootecnista. Universidad Católica de Santa María. 2021; pp. 119.
Rodrigues DP, Calado R, Pinho M, Domingues MR, Vázquez JA, Ameixa OM. Bioconversion and performance of black soldier fly (Hermetia illucens) in the recovery of nutrients from expired fish feeds. Waste Manag. 2022; 141: 183-193.
Randazzo B, Zarantoniello M, Cardinaletti G, Cerri R, Giorgini E, Belloni A, ... Olivotto I. Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: A multidisciplinary study on fish gut status. Animals. 2021; 11(3): 677.
Rawski M, Mazurkiewicz J, Kierończyk B, Józefiak D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals. 2020; 10(11): 2119.
Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, ... Gasco L. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017; 8(1): 1-13.
Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013; 57(5): 802-823.
Sánchez M, Gómez C, Avendaño C, Harmsen I, Ortiz D, Ceballos R, ... Valenzuela C. House fly (Musca domestica) larvae meal as an ingredient with high nutritional value: Microencapsulation and improvement of organoleptic characteristics. Food Res. Int. 2021; 145: 110423.
Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M, Madrid J, ... Gasco L. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017; 8: 1-9.
Sibinga NA, Lee MT, Buchon N, Johnson EL, Selvaraj V, Marquis H. Do antimicrobial peptide levels alter performance of insect-based aquaculture feeds–a study using genetic models of insect immune activation. J. Insects Food Feed. 2023; 9(7): 919-934.
Silva MS, Matos R, Araujo P, Lock EJ, Gopika R, Prabhu PAJ, Belghit I. In vitro assessment of protein digestibility and mineral solubility of black soldier fly larvae meals for monogastric animals. J. Insects Food Feed. 2022; 8(9): 953-966.
Sinha AK, Kumar V, Makkar HP, De Boeck G, Becker K. Non-starch polysaccharides and their role in fish nutrition–A review. Food Chem. 2011; 127(4): 1409-1426.
Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, ... De Smet S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017; 97(8): 2594-2600.
Stadtlander T, Stamer A, Buser A, Wohlfahrt J, Leiber F, Sandrock C. Hermetia illucens meal as fish meal replacement for rainbow trout on farm. J. Insects Food Feed. 2017; 3(3): 165-175.
St-Hilaire S, Cranfill K, McGuire M, Mosley EE, Tomberlin JK, Newton L, Sealey W, Sheppard C, Irving S. Fish Offal Recycling by the Black Soldier Fly Produces a Foodstuff High in Omega-3 Fatty Acids. JWAS. 2007; 38(2): 309-313.
Stejskal V, Tran HQ, Prokesová M, Zare M, Gebauer T, Policar T, ... Gasco L. Defatted black soldier fly (Hermetia illucens) in pikeperch (Sanderlucioperca) diets: Effects on growth performance, nutrient digestibility, fillet quality, economic and environmental sustainability. Anim. Nutr. 2023; 12: 7-19.
Sumbule EK, Ambula MK, Osuga IM, Changeh JG, Mwangi DM, Subramanian S, ... Tanga, CM. Cost-effectiveness of black soldier fly larvae meal as substitute of fishmeal in diets for layer chicks and growers. Sustainability. 2021; 13(11): 6074.
Suryati T, Julaeha E, Farabi K, Ambarsari H, Hidayat AT. Lauric Acid from the Black Soldier Fly (Hermetia illucens) and Its Potential Applications. Sustainability. 2023; 15(13): 10383.
Tippayadara N, Dawood MA, Krutmuang P, Hoseinifar SH, Doan HV, Paolucci M. Replacement of fish meal by Black soldier fly (Hermetia illucens) larvae meal: Effects on growth, haematology, and skin mucus immunity of Nile Tilapia, Oreochromis niloticus. Animals. 2021; 11(1): 193.
Toriz-Roldan A, Ruiz-Vega J, García-Ulloa M, Hernández-Llamas A, Fonseca-Madrigal J, Rodríguez-González H. Assessment of Dietary Supplementation Levels of Black Soldier Fly, Hermetia illucens, Pre-Pupae Meal for Juvenile Nile Tilapia, Oreochromis niloticus. Southw. Entomol. 2019; 44(1): 251-259.
Tran G, Heuzé V, Makkar HP. Insects in fish diets. Anim. Front. 2015; 5(2): 37-44.
Tran HQ, Prokešová M, Zare M, Gebauer T, Elia AC, Colombino E, ... Stejskal V. How does pikeperch Sander lucioperca respond to dietary insect meal Hermetia illucens? Investigation on gut microbiota, histomorphology, and antioxidant biomarkers. Front. Mar. Sci. 2021; 8: 680942.
Tan HSG, Fischer AR, Tinchan P, Stieger M, Steenbekkers LPA, van Trijp HC. Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Qual. Prefer. 2015; 42: 78-89.
Tschirner M, Simon A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed. 2015; 1(4): 249-259.
Viesca FC, Romero AT. La Entomofagia en México. Algunos aspectos culturales. El Periplo Sustentable. 2009; 16: 57-83.
Vilcinskas A. Evolutionary plasticity of insect immunity. J. Insect Physiol. 2013; 59(2): 123-129.
Villanueva-Gutiérrez E, Rodriguez-Armenta C, González-Félix ML, Perez-Velazquez M. Incorporating hydrolyzed soy protein or black soldier fly (Hermetia illucens) larvae meal into feeds for Totoaba macdonaldi. Aquaculture. 2022; 554: 738152.
Wang YS, Shelomi M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods. 2017; 6(10): 91.
Wang G, Peng K, Hu J, Yi C, Chen X, Wu H, Huang Y. Evaluation of defatted black soldier fly (Hermetia illucens L.) larvae meal as an alternative protein ingredient for juvenile Japanese seabass (Lateolabrax japonicus) diets. Aquaculture. 2019; 507: 144-154.
Weththasinghe P, Lagos L, Cortés M, Hansen JØ, Øverland M. Dietary inclusion of black soldier fly (Hermetia illucens) larvae meal and paste improved gut health but had minor effects on skin mucus proteome and immune response in Atlantic salmon (Salmo salar). Front. Immunol. 2021; 12: 599530.
Van Huis A. Potential of insects as food and feed in assuring food security. Ann. Rev. Entomol. 2013; 58: 563-583.
Van Huis A. Welfare of farmed insects. J. Insects Food Feed. 2019; 5(3): 159-162.
Xu X, Ji H, Yu H, Zhou J. Influence of dietary black soldier fly (Hermetia illucens Linnaeus) pulp on growth performance, antioxidant capacity and intestinal health of juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture Nutr. 2020; 26(1): 432-443.
Zarantoniello M, Randazzo B, Secci G, Notarstefano V, Giorgini E, Lock EJ, ... Olivotto I. Application of laboratory methods for understanding fish responses to black soldier fly (Hermetia illucens) based diets. J. Insects Food Feed. 2022; 8(11): 1173-1195.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Política de acceso abierto
Esta revista proporciona un acceso abierto inmediato a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global de conocimiento. La publicación por parte de terceros será autorizada por Revista Veterinaria toda vez que se la reconozca debidamente y en forma explícita como lugar de publicación del original.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0)