Evaluación de los efectos genotóxicos del 2,4-D en Piaractus mesopotamicus mediante el test de aberraciones cromosómicas

Autores/as

  • Francisco Cowper-Coles Facultad de Ciencias Veterinarias. Universidad Nacional del Nordeste. Sargento Cabral Nº 2139 - Corrientes, Corrientes, Argentina. https://orcid.org/0000-0001-6203-4933
  • María Josefa Jorge Facultad de Ciencias Exactas y Naturales y Agrimensura de la Universidad Nacional del Nordeste. 9 de Julio 1449 -Corrientes, Corrientes, Argentina. https://orcid.org/0009-0004-1920-4772
  • Lilian Cristina Jorge Facultad de Ciencias Veterinarias. Universidad Nacional del Nordeste. Sargento Cabral Nº 2139 - Corrientes, Corrientes, Argentina. https://orcid.org/0009-0001-2531-6787

DOI:

https://doi.org/10.30972/vet.3719059

Palabras clave:

peces, ácido 2,4-diclorofenoxiacético, mutagenicidad, alteraciones cromosómicas

Resumen

El impacto del herbicida 2,4-diclorofenoxiacético (2,4-D) en los ecosistemas acuáticos y, particularmente, en la biología de los peces, ha sido escasamente documentado. En este estudio se evaluó el potencial efecto genotóxico del 2,4-D en Piaractus mesopotamicus mediante el análisis de aberraciones cromosómicas en células renales. Se realizaron dos ensayos con 2,4-D: en uno se utilizó el producto puro (P) y en el otro una formulación comercial, 2,4-D Amina Sumagro® (FC). En ambos ensayos, los peces se distribuyeron en un grupo control (C) y cinco grupos tratados (T1 = 1 ppm; T2 = 1,8 ppm; T3 = 3,2 ppm; T4 = 5,6 ppm y T5 = 10 ppm). Tras un período de exposición de 70 días, los ejemplares fueron sacrificados mediante sobredosis de clorhidrato de lidocaína, y se analizaron un total de 1.100 metafases mitóticas. Las aberraciones cromosómicas observadas incluyeron gaps y quiebras cromosómicas, adhesividad, endomitosis y pulverización. No se registraron diferencias significativas entre los grupos tratados y los controles. Sin embargo, al considerar conjuntamente las concentraciones equivalentes de las formulaciones pura y comercial, se observó una diferencia estadísticamente significativa a 10 ppm en comparación con los controles. Estos resultados sugieren que la exposición crónica a concentraciones subletales de 2,4-D podría inducir alteraciones genotóxicas en P. mesopotamicus, especialmente a concentraciones elevadas. En consecuencia, se destaca la necesidad de fortalecer la vigilancia ambiental y la regulación del uso de herbicidas en sistemas agrícolas, con el fin de prevenir impactos adversos sobre la biota acuática.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Aldana-Salazar F, Rangel N, Rodríguez MJ, Baracaldo C, Martínez-Agüero M, Rondón-Lagos M. Chromosomal Damage, Chromosome Instability, and Polymorphisms in GSTP1 and XRCC1 as Biomarkers of Effect and Susceptibility in Farmers Exposed to Pesticides. Int. J. Mol. Sci. 2024; 25(8): 4167.

2. Belpaeme K, Delbeke K, Zhu L, Kirsch-Volders M. Cytogenetic studies of PCB77 on brown trout (Salmo trutta fario) using the micronucleus test and the alkaline comet assay. Mutagenesis. 1996; 11(5):485-92.

3. Borges S, Dzubow C, Orrick G, Stavola A, Branch EF. 2,4-Dichlorophenoxyacetic acid analysis of risks to endangered and threatened salmon and steelhead. USEPA Environmental Field Branch Office of Pesticide Programs, USA. 2004. Disponible en: https://19january2021snapshot.epa.gov/sites/static/files/2013-09/documents/24d-analysis.pdf. Último acceso, 2024.

4. Caramello CS, Jorge MJ, Jorge NL, Jorge LC. Evaluación de los efectos del herbicida glifosato en el pez Prochilodus lineatus a través del test de aberración cromosómica. Rev. Vet. 2017; 28(1): 65-68.

5. Carriquiriborde P. Principios de Ecotoxicología. Libros de Cátedra. Ed de la UNLP. La Plata; 2021. p. 290.

6. Chandra P, Khuda-Bukhsh AR. Genotoxic effects of cadmium chloride and azadirachtin treated singly and in combination in fish. Ecotoxicol. Environ. Saf. 2004; 58 (2): 194-201.

7. Das P, John G. Induction of sister chromatid exchanges and chromosome aberrations in vivo in Etroplus suratensis (Bloch) following exposure to organophosphorus pesticides. Toxicol Lett. 1999; 104(1-2): 111-116.

8. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión 2020. Córdoba: Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Disponible en: https://www.infostat.com.ar/index.php?mod=page&id=46. Último acceso 2024.

9. Farah MA, Ateeq B, Ahmad W. Antimutagenic effect of neem leaves extract in freshwater fish, Channa punctatus evaluated by cytogenetic tests. Sci. Total. Environ. 2006; 364(1-3): 200-214.

10. Foresti F, Oliveira C, Foresti de Almeida-Toledo L. A method for chromosome preparations from large fish specimens using in vitro short-term treatment with colchicine. Experientia. 1993; 49: 810-813.

11. Freisthler MS, Robbins CR, Benbrook CM, Young HA, Haas DM, Winchester PD, Perry MJ. Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the National Health and Nutrition Examination Survey, 2001-2014. Environmental Health. 2022; 21(1): 23.

12. Gaaied S, Oliveira M, Barreto A, Zakhama A, Banni M. 2,4-Dichlorophenoxyacetic acid (2,4-D) affects DNA integrity and retina structure in zebrafish larvae. Environ. Sci. Pollut. Res. 2022; 29(56): 85402-85412.

13. Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhua J, Zhao M, Muños S, Li QX, Zhou W. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ. Int. 2018; 111: 332-351.

14. Laborde MR. Plaguicidas nanofuncionalizados de 2,4-D y lambdacialotrina: estudio de efectos cito-y genotóxicos y sus posibles mecanismos de acción en sistemas in vitro e in vivo. Tesis Doctoral, Universidad Nacional de La Plata, La Plata, Argentina. 2024. p. 263.

15. Magnoli K, Carranza CS, Aluffi ME, Magnoli CE, Barberis CL. Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 2020; 27: 38501-38512.

16. Mesnage R, Brandsma I, Moelijker N, Zhang G, Antoniou MN. Genotoxicity evaluation of 2,4-D, dicamba and glyphosate alone or in combination with cell reporter assays for DNA damage, oxidative stress and unfolded protein response. Food Chem. Toxicol. 2021; 157: 112601.

17. Ministerio de Economía. Agricultura, Ganadería y Pesca. SENASA. Prohibiciones para el producto fitosanitario Ácido 2,4 Diclorofenoxiácetico. Disponible en: https://www.argentina.gob.ar/noticias/prohibiciones-para-el-producto-fitosanitario-acido-24-diclorofenoxiacetico. Ultimo acceso 2025.

18. Palma Leotta ME. Los peces como indicadores de sanidad ambiental en sistemas acuáticos. Divulgación Científica. 2022; 1-3. Disponible en: https://www.colvetmza.com.ar/wp-content/uploads/2023/01/9-Palma-Leotta_-Los-peces-como....pdf. Último acceso, 2025.

19. Paravani EV., Acosta MG, Bianchi M, Battauz YS, Poletta GL, Sasal MC, Simoniello MF, Odetti LM, Querubín Pereyra PL, Roda RM. Estrés oxidativo y genotoxicidad en células branquiales de los peces cebra (Danio rerio) adultos sometidos a concentraciones ambientales de plaguicidas y mezclas complejas. Cienc. Docencia Tecnol. Suplemento. 2024; 14(16): 542-565.

20. Ramadan AA. Genotoxic effects of butataf herbicide on Nile Tilapia. J. Arabian Aquac. Soc. 2007; 2(1): 70-89.

21. Reyes-Palomino SE, Cano Ccoa DM. Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad. Rev. Investig. Altoandin. 2022; 24(1): 53-64.

22. Rishi KK, Grewal S. Chromosome aberration test for the insecticide, dichlorvos, on fish chromosomes. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1995; 344(1-2): 1-4.

23. Savage JR. On the nature of visible chromosomal gaps and breaks. Cytogenet Genome Res. 2004; 104(1-4): 46-55.

24. Soto DA, Luque FA, Gnazzo V. Peces de consumo humano como indicadores de contaminación ambiental por plaguicidas en el norte de Misiones, Argentina. Rev. Argent. Salud. 2020; 11(42): 7-14.

25. Tagliaferro, M. Uso de peces y macrófitas como indicadores. En: La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina: bases para el análisis de la integridad ecológica. Compilado por Domínguez E, Giorgi A, Gómez N. 1ª ed. Ciudad Autónoma de Buenos Aires, Eudeba, 2020 Libro digital, PDF. p 230-239.

26. Valbuena DS, Meléndez-Flórez MP, Villegas VE, Sánchez MC, Rondón-Lagos M. Daño celular y genético como determinantes de la toxicidad de los plaguicidas. Cienc. Desarro. 2020; 11(2): 25-42.

27. WHO. World Health Organization. The WHO recommended classification of pesticides by hazard and guidelines to classification 2019. Disponible en: https://iris.who.int/server/api/core/bitstreams/36c193cd-2362-46d1-be00-fef570d80037/content. Último acceso, 2023.

28. Zafra-Lemos L, Cusioli LF, Bergamasco R, Borin-Carvalho LA, de Brito Portela-Castro AL. Evaluation of the genotoxic and cytotoxic effects of exposure to the herbicide 2,4-dichlorophenoxyacetic acid in Astyanax lacustris (Pisces, Characidae) and the potential for its removal from contaminated water using a biosorbent. Mutat Res Genet Toxicol Environ Mutagen. 2021; 865: 503335.

Descargas

Publicado

2026-01-02

Cómo citar

Cowper-Coles, F., Jorge, M. J., & Jorge, L. C. (2026). Evaluación de los efectos genotóxicos del 2,4-D en Piaractus mesopotamicus mediante el test de aberraciones cromosómicas. Revista Veterinaria, 37(1), 1–7. https://doi.org/10.30972/vet.3719059

Número

Sección

Artículos