Estrés oxidativo durante la maduración in vitro de ovocitos bovinos: una revisión

Autores/as

  • Sabrina Itatí Romero Monteleone Cátedra de Producción Bovina, Facultad de Ciencias Veterinarias - Universidad Nacional del Nordeste, Corrientes, Argentina. https://orcid.org/0009-0007-4639-2651
  • Lia Macarena Navarro Krilich Cátedra de Producción Bovina, Facultad de Ciencias Veterinarias - Universidad Nacional del Nordeste, Corrientes, Argentina. https://orcid.org/0009-0003-3688-2308
  • Jonatan Yostar Cátedra de Producción Bovina, Facultad de Ciencias Veterinarias - Universidad Nacional del Nordeste, Corrientes, Argentina https://orcid.org/0009-0006-9130-4027
  • Franco Alejandro Dellavalle Cátedra de Producción Bovina, Facultad de Ciencias Veterinarias - Universidad Nacional del Nordeste, Corrientes, Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Mercedes, Corrientes, Argentina. https://orcid.org/0009-0003-3321-8284
  • Adriana Capellari Cátedra de Producción Bovina, Facultad de Ciencias Veterinarias - Universidad Nacional del Nordeste, Corrientes, Argentina https://orcid.org/0009-0003-9501-2935
  • Amada Eugenia Ynsaurralde-Rivolta Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Mercedes, Corrientes, Argentina. https://orcid.org/0009-0000-9437-6815

DOI:

https://doi.org/10.30972/vet.3719105

Palabras clave:

competencia ovocitaria, cultivo in vitro

Resumen

La producción in vitro (PIV) de embriones bovinos se ha consolidado como la biotecnología reproductiva más difundida a nivel global. Dentro de este sistema, la maduración in vitro (MIV) de ovocitos constituye un punto crítico, ya que durante este proceso ocurren transformaciones nucleares, citoplasmáticas y del cúmulo que determinan la competencia para la fecundación y el desarrollo embrionario. La MIV es altamente sensible a factores ambientales como el tiempo de cultivo, la temperatura, el pH, la concentración de oxígeno, la exposición a la luz, los cuales pueden inducir estrés oxidativo y comprometer la viabilidad celular. La sobreproducción de especies reactivas de oxígeno daña estructuras esenciales como el ADN, las proteínas y las mitocondrias, afectando la maduración y el posterior desarrollo del embrión. Estudios recientes evidencian que el cultivo prolongado y las fluctuaciones térmicas generan una memoria molecular que reduce la competencia ovocitaria, aun en condiciones posteriores normales. Frente a estas limitaciones, se han propuesto diversas estrategias. La suplementación con antioxidantes como cisteamina, L-cisteína, melatonina, epigalocatequina, resveratrol, vitamina C y ácidos grasos omega-3 ha mostrado efectos positivos en la maduración y en la reducción del daño oxidativo, aunque con resultados variables. Más recientemente, el ácido fólico ha cobrado relevancia por sus efectos antioxidantes y epigenéticos, al inhibir la ferroptosis y mejorar la competencia ovocitaria. En conclusión, la optimización de la MIV requiere integrar el control de factores ambientales con estrategias antioxidantes y moleculares adaptadas a cada laboratorio, a fin de preservar la calidad ovocitaria y maximizar el potencial de desarrollo embrionario

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Abedini Najafabadi A. Elucidation of the biological roles of Wnt5a signaling in follicle development. Tesis Doctoral (PhD), Doctoral Dissertation, The University of Montreal, Montreal, Canadá. 2015.

2. Adona PR, Leal CL, Biase FH, De Bem TH, Mesquita LG, Meirelles FV, Guemra S. In vitro maturation alters gene expression in bovine oocytes. Zygote. 2016; 24(4): 624-633.

3. Agarwal A, Durairajanayagam D, Du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol. 2014; 12(1): 112.

4. Aguilar-Piña RE. El regreso del ovocito: de la olvidada transferencia citoplasmática a la actual transferencia del huso meiótico. Rev Mex Med Reprod. 2012; 4(3): 132-138.

5. Ali AA, Bilodeau JF, Sirard MA. Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology. 2003; 59: 939-949.

6. Aman RR, Parks JE. Effects of cooling and rewarming on the meiotic spindle and chromosomes of in vitro-matured bovine oocytes. Biology of Reproduction. 1994; 50(1), 103-110.

7. Báez F, de Brun V, Rodríguez-Osorio N, Viñoles C. 32 Low oxygen tension during in vitro oocyte maturation and fertilisation improves cryotolerance of bovine blastocysts produced in vitro. Reprod Fertility Dev. 2021; 34(2): 251-251.

8. Baghshahi H, Zeynodini S, Shahneh AZ, Khanian SE, Yousefi AR, Goodarzi, A. Effect of adding different levels of folic acid to the culture medium on developmental competence of bovine oocytes. Iran J Appl Anim Sci. 2021; 11(2).

9. Bahrami M, Cottee PA. Culture conditions for in vitro maturation of oocytes–A review. Reprod Breed. 2022; 2(2): 31-36.

10. Balasubramanian S, Rho GJ. Effect of cysteamine supplementation of in vitro matured bovine oocytes on chilling sensitivity and development of embryos. Anim Reprod Sci. 2007; 98: 282–292.

11. Barberino RS, Silva JRV, Figueiredo JR, Matos M HT. Transport of domestic and wild animal ovaries: a review of the effects of medium, temperature, and periods of storage on follicular viability. Biopreservation and biobanking. 2019; 17(1): 84-90.

12. Barceló-Fimbres M, Campos-Chillón LF, Mtango NR, Altermatt J, Bonilla L, Koppang R, Verstegen JP. Improving in vitro maturation and pregnancy outcome in cattle using a novel oocyte shipping and maturation system not requiring a CO2 gas phase. Theriogenology. 2015; 84(1), 109–117.

13. Biradar P, Singh P, Singh N, Honparkhe M, Sethi RS. Developmental competence of ovum pick up derived Sahiwal cow oocytes in maturation media supplemented with cysteamine and melatonin. Tissue Cell. 2025; 95: 102819.

14. Blondin P, Coenen K, Sirard MA. The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J Androl. 1997; 18(4): 454-60.

15. Bodis J, Gödöny K, Várnagy Á, Kovács K, Koppán M, Nagy B, Erostyák J, Herczeg R, Szekeres-Barthó J, Gyenesei A, Kovács GL. How to reduce the potential harmful effects of light on blastocyst development during IVF. Med Princ Pract. 2020; 29(6): 558-564.

16. Bognar Z, Csabai TJ, Pallinger E, Balassa T, Farkas N, Schmidt J, Görgey E, Berta G, Szekeres-Bartho J, Bodis J. The effect of light exposure on the cleavage rate and implantation capacity of preimplantation murine embryos. J Reprod Immunol. 2019; 132: 21-28.

17. Cagnone G, Sirard MA. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction. 2016; 152(6): R247-R261.

18. Camargo LSA, Aguirre-Lavin T, Adenot P, Araujo TD, Mendes VRA, Louro ID, Beaujean N, Souza ED. Heat shock during in vitro maturation induces chromatin modifications in the bovine embryo. Reproduction. 2019; 158(4): 313-322.

19. Campen KA, Abbott CR, Rispoli LA, Payton RR, Saxton AM, Edwards JL. Heat stress impairs gap junction communication and cumulus function of bovine oocytes. J Reprod Dev. 2018; 64(5): 385-392.

20. Cavalera F, Zanoni M, Merico V, Sacchi L, Bellazzi R, Garagna S, Zuccotti M. Chromatin organization and timing of polar body I extrusion identify developmentally competent mouse oocytes. Int J Dev Biol. 2019; 63(3-4-5): 245-251.

21. Chauhan MS, Anand SR. In vitro maturation and fertilization of goat oocytes. Ind J Exp Biol. 1991; 29: 105-110.

22. Clark NA, Swain JE. Buffering systems in IVF. In: Quinn P, editor. Culture media, solutions, and systems in human ART. Cambridge: Cambridge University Press; 2014. p. 30-46.

23. Combelles CM, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes. Reprod Biomed. 2009; 18: 864-880.

24. Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018; 24(3): 245-266.

25. Cooper GM. The Cell: A Molecular Approach. 2nd ed. Sunderland (MA): Sinauer Associates; 2000. Meiosis and Fertilization. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK9901/. Último acceso: 20 de julio de 2025.

26. Crozet N, Ahmaed-Ali M, Dubos MP. Developmental competence of goat oocyte from follicles of different size categories following maturation, fertilization and culture in vitro. J Reprod Fertil. 1995; 103: 293-298.

27. De Giusti VC, Caldiz CI, Ennis IL, Perez NG, Cingolani HE, Aiello EA. Mitochondrial reactive oxygen species (ROS) as signaling molecules of intracellular pathways triggered by the cardiac renin-angiotensin II-aldosterone system (RAAS). Front Physiol. 2013; 4: 126.

28. de Matos DG, Furnus CC, Moses DF, Baldassarre H. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev. 1995; 42(4): 432-436.

29. Dekel N. Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Mol Cell Endocrinol. 2005; 234(1-2): 19-25.

30. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012; 149(5): 1060-1072.

31. Dominko T, First NL. Timing of meiotic progression in bovine oocyte and its effect on early embryo development. Mol Reprod Dev. 1997; 47: 456-467.

32. Du Plessis SS, Makker K, Desai NR, Agarwal A. Impact of oxidative stress on IVF. Expert Rev Obstet Gynecol. 2008; 3(4): 539-554.

33. Edwards JL, Saxton AM, Lawrence JL, Payton RR, Dunlap JR. Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J Dairy Sci. 2005; 88(12): 4326-4333.

34. Elgebaly MM, Hazaa ABM, Amer H A, Mesalam A. L‐Cysteine improves bovine oocyte developmental competence in vitro via activation of oocyte‐derived growth factors BMP‐15 and GDF‐9. Reprod Domest Anim. 2022; 57(7): 734-742.

35. El-Raey M, Geshi M, Somfai T, Kaneda M, Hirako M, Abdel-Ghaffar AE, Sosa GA, A. AE-RME, Nagai T. Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle. Mol Reprod Dev. 2011; 78: 250-262.

36. Fair T, Hyttel P, Greve T. Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol Reprod Dev. 1995; 42: 437-42.

37. Farahavar A, Shahne AZ. Effect of melatonin on in vitro maturation of bovine oocytes. Afr J Biotechnol. 2010; 9(17): 2579-2583.

38. First NL, Parrish JJ. In vitro fertilization of ruminants. J Reprod Fertil. 1987; 34: 151-165.

39. Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol. 1998; 201(Pt 8): 1203-1209.

40. Gilchrist RB, Ritter LJ, Armstrong DT. Oocyte–somatic cell interactions during follicle development in mammals. Anim Reprod Sci. 2004; 82: 431-446.

41. Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction. 2016; 152: R143-R157.

42. Gordon I. Laboratory production of cattle embryos. 2nd ed. Wallingford (UK): CABI International Publishing; 2003. p. 157.

43. Goto Y, Noda Y, Mori T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med. 1993; 15(1): 69-75.

44. Grøndahl C. Oocyte maturation. Basic and clinical aspects of in vitro maturation (IVM) with special emphasis of the role of FF-MAS. Dan Med Bull. 2008; 55(1): 1-16.

45. Guérin P, El Mouatassim S, Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001; 7(2): 175-89.

46. Gutiérrez-Añez JC, Lucas-Hahn A, Hadeler KG, Aldag P, Niemann H. Melatonin enhances in vitro developmental competence of cumulus-oocyte complexes collected by ovum pick-up in prepubertal and adult dairy cattle. Theriogenology. 2021; 161: 285-293.

47. Gutnisky C, Dalvit GC, Thompson JG, Cetica PD. Pentose phosphate pathway activity: effect on in vitro maturation and oxidative status of bovine oocytes. Reprod Fertil Dev. 2013; 25: 1026-1035.

48. Haida Z, Hakiman M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci Nutr. 2019; 7: 1555-1563.

49. Hanada A, Shioya Y, Suzuki T. Birth of calves after non-surgical transfer of bovine IVM/IVF oocytes. In: Proceedings of the 78th Meeting of the Japanese Society of Zootechnical Science. 1986; p. 18.

50. Hansen PJ. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology. 2007; 68(1): S242-S249.

51. Hardy K, Wright CS, Franks S, Winston, RM. In vitro maturation of oocytes. Br Med bull. 2000; 56(3): 588-602.

52. Hatırnaz S, Ata B, Hatırnaz ES, Dahan MH, Tannus S, Tan J, Tan SL. Oocyte in vitro maturation: A sytematic review. Turk J Obstet Gynecol. 2018; 15(2): 112.

53. Hockberger PE, Skimina TA, Centonze VE, Lavin C, Chu S, Dadras S, Reddy JK, White JG. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci USA. 1999; 96: 6255-6260.

54. Hunter HF, Greve T. ¿Could artificial insemination of cattle be more fruitful? Penalties associated with aging eggs. Reprod Dom Anim. 1997; 32: 137-142.

55. Hussein T, Thompson J, Gilchrist R. Oocyte-secreted factors enhance oocyte developmental competence. Develop Biol. 2006; 296: 514-521.

56. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Revi Mol Cell Biol. 2021; 22(4): 266-282.

57. Ju JC, Jiang S, Tseng JK, Parks JE, Yang X. Heat shock reduces developmental competence and alters spindle configuration of bovine oocytes. Theriogenology. 2005; 64(8): 1677-1689.

58. Kahraman S, Çetinkaya CP, Çetinkaya M, Tüfekçi MA, Ekmekçi CG, Montag M. Is there a correlation between follicle size and gene expression in cumulus cells and is gene expression an indicator of embryo development? Reprod Biol Endocrinol. 2018; 16: 69.

59. Keane JA, Ealy AD. An overview of reactive oxygen species damage occurring during in vitro bovine oocyte and embryo development and the efficacy of antioxidant use to limit these adverse effects. Animals. 2024; 14(2): 330.

60. Khodavirdilou R, Pournaghi M, Oghbaei H, Rastgar Rezaei Y, Javid F, Khodavirdilou, L, Dittrich, R. Toxic effect of light on oocyte and pre-implantation embryo: a systematic review. Arc Toxicol. 2021; 95(10): 3161-3169.

61. Koyama K, Kang SS, Huang W, Yanagawa Y, Takahashi Y, Nagano M. Aging-related changes in in vitro-matured bovine oocytes: oxidative stress, mitochondrial activity and ATP content after nuclear maturation. J Reprod Dev. 2014; 60(2): 136-142.

62. Kumar S, Sharma S, Vasudeva N. Review on antioxidants and evaluation procedures. Chin J Integr Med. 2017; 1-12.

63. Landínez Aponte JA, Villamediana PC, Hernández Fonseca HJ, Soto Belloso E. Efecto del tiempo de maduración in vitro de ovocitos bovinos sobre la progresión meiótica. Nota técnica. Rev Cient. 2010; 20(6): 659-664.

64. Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 2002; 128: 682-695.

65. Latorraca LB, Feitosa WB, Mariano C, Moura MT, Fontes PK, Nogueira MF, Paula-Lopes FF. Autophagy is a pro-survival adaptive response to heat shock in bovine cumulus-oocyte complexes. Sci Rep. 2020; 10(1): 13711.

66. Lee JY, Jung YG, Seo BB. Effects of culture media conditions on in vitro fertilized egg production from high-grade Hanwoo ovary-derived embryos. J Anim Sci Technol. 2016; 58(1): 1.

67. Lénárt P, Bacher CP, Daigle N, Hand AR, Eils R, Terasaki M, Ellenberg J. A contractile nuclear actin network drives chromosome congression in oocytes. Nature. 2005; 436(7052): 812-818.

68. Li Z, Gu R, Lu X, Zhao S, Feng Y, Sun Y. Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes. J Assist Reprod Genet. 2018; 35(7): 1169-1178.

69. Lin J, Wang L. Oxidative stress in oocytes and embryo development: Implications for in vitro systems. Antioxid Redox Signal. 2021; 34(17): 1394-1406.

70. Liu M, Wu K, Wu Y. The emerging role of ferroptosis in female reproductive disorders. Biomed Pharmacother. 2023; 166:115415. doi: 10.1016/j.biopha.2023.115415

71. Lodde V, Luciano AM, Musmeci G, Miclea I, Tessaro I, Aru M, Albertini DF, Franciosi F. A Nuclear and cytoplasmic characterization of bovine oocytes reveals that cysteamine partially rescues the embryo development in a model of low ovarian reserve. Animals. 2021; 11(7): 1936.

72. Lonergan P, Fair T. Maturation of oocytes in vitro. Annu Rev Anim Biosci. 2016; 4: 255-268.

73. Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005; 5(1): 5-17.

74. Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S. Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus-oocyte complexes: Role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol Reprod Dev. 2005; 71(3): 389-397.

75. Malott KF, Reshel S, Ortiz L, Luderer U. Glutathione Deficiency Decreases Lipid Droplet Stores and Increases Reactive Oxygen Species in Mouse Oocytes. Biol Reprod. 2022; 106: 1218-1231.

76. Mao L, Lou H, Lou Y, Wang N, Jin F. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online. 2014; 28: 284-299.

77. Marei WFA, De Bie J, Mohey-Elsaeed O, Wydooghe E, Bols PEJ, Leroy JLMR. Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol Reprod. 2017; 96(6): 1181-1196.

78. Martino A, Pollard JW, Leibo SP. Effect of chilling bovine oocytes on their developmental competence. Mol Reprod Dev. 1996; 45(4): 503-12.

79. Matsushita S, Tani T, Kato Y, Tsunoda Y. Effect of low-temperature bovine ovary storage on the maturation rate and developmental potential of follicular oocytes after in vitro fertilization, parthenogenetic activation, or somatic cell nucleus transfer. Anim Reprod Sci. 2004; 84(3-4): 293-301.

80. Maya-Soriano MJ, López-Gatius F, Andreu-Vázquez C, López-Béjar M. Bovine oocytes show a higher tolerance to heat shock in the warm compared with the cold season of the year. Theriogenology. 2013; 79(2): 299-305.

81. Morimoto Y, Hashimoto S, Yamochi T, Goto H, Amo A, Yamanaka M, Inoue M. Mitochondria of the oocyte. In: Morimoto Y, editor. Development of in vitro maturation for human oocytes: Natural and mild approaches to clinical infertility treatment. Cham (Switzerland): Springer International Publishing; 2017. p. 75-91.

82. Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K, Tsuzuki Y. The effects of cysteine addition during in vitro maturation on the developmental competence, ROS, GSH and apoptosis level of bovine oocytes exposed to heat stress. Zygote. 2012; 20(3): 249-259.

83. Naranjo-Gómez JS, Uribe-García HF, Herrera-Sánchez MP, Lozano-Villegas KJ, Rodríguez-Hernández R, Rondón-Barragán IS. Heat stress on cattle embryo: Gene regulation and adaptation. Heliyon. 2021; 7(3): e06570.

84. Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM. Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril. 2007; 88: 1150-1157.

85. Pang Y, Zhao S, Sun Y, Jiang X, Hao H, Du W, Zhu H. Protective effects of melatonin on the in vitro developmental competence of bovine oocytes. Anim Sci J. 2018; 89(4): 648-660.

86. Park Y, Kim S, Kim J, Park H, Byun M. The effects of duration of in vitro maturation of bovine oocytes on subsequent development, quality and transfer of embryos. Theriogenology. 2005; 64: 123-134.

87. Pascottini OB, Catteeuw M, Van Soom A, Opsomer G. Holding immature bovine oocytes in a commercial embryo holding medium: High developmental competence for up to 10 h at room temperature. Theriogenology. 2018; 107: 63-69.

88. Payton RR, Romar R, Coy P, Saxton AM, Lawrence JL, Edwards JL. Susceptibility of bovine germinal vesicle-stage oocytes from antral follicles to direct effects of heat stress in vitro. Biol Reprod. 2004; 71(4): 1303-1308.

89. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015; 30(1): 11-26.

90. Pinyopummintr T, Bavister BD. Optimum gas atmosphere for in vitro maturation and in vitro fertilization of bovine oocytes. Theriogenology. 1995; 44(4): 471-7.

91. Ploutarchou P, Melo P, Day AJ, Milner CM, Williams SA. Molecular analysis of the cumulus matrix: Insights from mice with O-glycan-deficient oocytes. Reproduction. 2015; 149: 533-543.

92. Prasad SV, Ghongane BB, Chourishi A, Vakade K, Kunkulol RR. Role of Antioxidants in Male Reproduction. Int J Physiol Pharmacol, 2018; 2: 1-6.

93. Richani D, Gilchrist RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update. 2018; 24: 1-14.

94. Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021; 27(1): 27-47.

95. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian folliculogenesis. Results Probl Cell Differ. 2016; 58: 167-190.

96. Rispoli LA, Payton R, Gondro C, Saxton A, Nagle K, Jenkins BW, Schrick F, Edwards JL. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: Altered matrix metallopeptidase 9 and progesterone production. Reproduction. 2013; 146(2): 193-207.

97. Rosado-Pérez J, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Effect of Sechium edule var. nigrum spinosum (Chayote) on oxidative stress and pro-inflammatory markers in older adults with metabolic syndrome: an exploratory study. Antioxidants. 2019; 8(5): 146.

98. Roth Z, Hansen PJ. Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol Reprod. 2004; 71(6): 1898-1906.

99. Sakatani M. Effects of heat stress on bovine preimplantation embryos produced in vitro. J Reprod Dev. 2017; 63(4): 347-352.

100. Scialo F, Fernandez-Ayala DJ, Sanz A. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol. 2017; 8: 428.

101. Shaeib F, Khan SN, Ali I, Thakur M, Saed MG, Dai J, Awonuga AO, Banerjee J, Abu Soud HM. The defensive role of cumulus cells against reactive oxygen species insult in metaphase II mouse oocytes. Reprod Sci. 2016; 23(4):498-507.

102. Shi DS, Avery B, Greve T. Effects of temperature gradients on in vitro maturation of bovine oocytes. Theriogenology. 1998; 50(4): 667-674.

103. Silva CF, Sartorelli ES, Castilho ACS, Satrapa RA, Puelker RZ, Razza EM, Ticianelli JS, Eduardo HP, Loureiro B, Barros CM. Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology. 2013; 79(2): 351-357.

104. Singh WL, Barua PM, Sonowal J. Influence of Media Supplementation with Alpha Tocopherol and/or Epigallocatechin Gallate on in vitro Maturation and Subsequent Fertilization of Bovine Oocytes. J Anim Res. 2019; 9(6): 863-868.

105. Sirard MA, Desrosier S, Assidi M. In vivo and in vitro effects of FSH on oocyte maturation and developmental competence. Theriogenology. 2007; 68: S71-S76.

106. Soares M, Sousa AP, Fernandes R, Ferreira AF, Almeida-Santos T, Ramalho-Santos J. Aging-related mitochondrial alterations in bovine oocytes. Theriogenology. 2020; 157: 218-225.

107. Sovernigo TC, Adona PR, Monzani PS, Guemra S, Barros FDA, Lopes FG, Leal CLV. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Domest Anim. 2017; 52(4): 561-569.

108. Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod. 2001; 64: 1845-1854.

109. Stamperna K, Giannoulis T, Nanas I, Kalemkeridou M, Dadouli K, Moutou K, Amiridis GS, Dovolou E. Short term temperature elevation during IVM affects embryo yield and alters gene expression pattern in oocytes, cumulus cells and blastocysts in cattle. Theriogenology. 2020; 156: 36-45.

110. Stamperna K, Dovolou E, Giannoulis T, Kalemkeridou M, Nanas I, Dadouli K, Moutou K, Mamuris Z, Amiridis GS. Developmental competence of oocytes from Holstein and Limousine cows exposed to heat stress in vitro matured. Reprod Domest Anim. 2021; 56(9): 1302–1314.

111. Sugimura S, Kobayashi N, Okae H, Yamanouchi T, Matsuda H, Kojima T, Yajima A, Hashiyada Y, Kaneda M, Sato K, Imai K, Tanemura K, Arima T, Gilchrist RB. Transcriptomic signature of the follicular somatic compartment surrounding an oocyte with high developmental competence. Sci Rep. 2017; 7: 6815.

112. Takenaka M, Horiuchi T, Yanagimachi R. Effects of light on development of mammalian zygotes. Proc Natl Acad Sci USA. 2007; 104: 14289-14293.

113. Taru SG, Majumdar AC, Bonde S. Chronology of maturational events in goat oocytes cultured in vitro. Small Rum Res. 1996; 22: 25-30.

114. Taugourdeau A, Desquiret-Dumas V, Hamel JF, Chupin S, Boucret L, Ferre-L’Hotellier V, Bouet PE, Descamps P, Procaccio V, Reynier P. The mitochondrial DNA content of cumulus cells may help predict embryo implantation. J Assist Reprod Genet. 2019; 36: 223-228.

115. Ticianelli JS, Emanuelli IP, Satrapa RA, Castilho ACS, Loureiro B, Sudano MJ, Paula-Lopes FF. Gene expression profile in heat-shocked Holstein and Nelore oocytes and cumulus cells. Reprod Fertil Dev. 2017; 29(9): 1787-1802.

116. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013; 99(4): 979-997.

117. Vernon M, Stern JE, Ball GD, Wininger D, Mayer J, Racowsky C. Utility of the national embryo morphology data collection by the Society for Assisted Reproductive Technologies (SART): correlation between day-3 morphology grade and live-birth outcome. Fertil steril. 2011; 95(8): 2761-2763.

118. Verruma CG, Eiras MC, Fernandes A, Vila RA, Furtado CLM, Ramos ES, Lôbo RB. Folic acid supplementation during oocytes maturation influences in vitro production and gene expression of bovine embryos. Zygote. 2021; 29(5): 342-349.

119. Viana JHM. The number of in vitro-produced cattle embryos worldwide is now fivefold greater than that of in vivo-derived embryos. Embryo Technology Newsletter. 2024; 42(4). Disponible en: https://www.iets.org/Committees/Data-Retrieval-Committee. Último acceso: 20 julio 2025.

120. Voronina E, Wessel GM. The regulation of oocyte maturation. Curr Top Dev Biol. 2003; 58: 53-110.

121. Watson AJ. Oocyte cytoplasmic maturation: A key mediator of oocyte and embryo developmental competence. J Anim Sci. 2007; 85: E1-E3.

122. Wang YS, Zhao X, Su JM, An ZX, Xiong, XR, Wang LJ, Zhang Y. Lowering storage temperature during ovary transport is beneficial to the developmental competence of bovine oocytes used for somatic cell nuclear transfer. Anim Reprod Sci. 2011; 124(1-2): 48-54.

123. Will MA, Clark NA, Swain JE. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011; 28: 711-724.

124. Wrenzycki C, Stinshoff H. Maturation environment and impact on subsequent developmental competence of bovine oocytes. Reprod Domest Anim. 2013; 48(1): 38-43.

125. Wu B, Tong J, Leibo SP. Effects of cooling germinal vesicle–stage bovine oocytes on meiotic spindle formation following in vitro maturation. Mol Reprod Dev. 1999; 54(4): 388-395.

126. Xiao X, Zi XD, Niu HR, Xiong XR, Zhong JC, Li J, Li W, Yong W. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes. Reprod Biol Endocrinol. 2014; 12(1): 30.

127. Yang Z, Wei Y, Fu Y, Wang X, Shen W, Shi A, Zhang H, Li H, Song X, Wang J, Jin M, Zheng H, Tao J, Wang Y. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe2+ accumulation. Anim Reprod Sci. 2024; 270: 107605

128. Yang SG, Park HJ, Kim JW, Jung JM, Kim MJ, Jegal HG, Kim IS, Kang MJ, Wee G, Yang HY, Lee YH, Seo JH, Kim SU, Koo DB. Mito-TEMPO improves development competence by reducing superoxide in preimplantation porcine embryos. Sci Rep. 2018; 8(1): 10130.

129. Zhang T, Fan X, Li R, Zhang C, Zhang J. Effects of pre-incubation with C-type natriuretic peptide on nuclear maturation, mitochondrial behavior, and developmental competence of sheep oocytes. Biochem Biophys Res Commun. 2018; 497(1): 200-206.

130. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling. Int J Mol Med. 2019; 44(1): 3-15.

131. Zhu ZY, Chen DY, Li JS, Lian L, Lei L, Han ZM, Sun QY. Rotation of meiotic spindle is controlled by microfilaments in mouse oocytes. Biol Reprod. 2003; 68(3): 943-946.

Descargas

Publicado

2026-02-04

Cómo citar

Romero Monteleone, S. I., Navarro Krilich, L. M., Yostar, J., Dellavalle, F. A., Capellari, A., & Ynsaurralde-Rivolta, A. E. (2026). Estrés oxidativo durante la maduración in vitro de ovocitos bovinos: una revisión. Revista Veterinaria, 37(1), 1–11. https://doi.org/10.30972/vet.3719105

Número

Sección

Revisiones Bibliográficas