Machine learning in urban land cover cartographies. A tool for territorial management
DOI:
https://doi.org/10.30972/crn.39397898Keywords:
urban land cover map, automatic learning model, multivariate analysis, geographic information systemsAbstract
This study develops the analysis and semi-automated methodologies used for describing and mapping urban land cover and land uses in the province of Córdoba. The results demonstrate a notable correlation between the resulting classification and the territorial reality it represents. While not definitive, it approximates the characteristics of the built environment and the uses and activities that occur within it. The application of these methodologies is viewed as contributing to key temporal monitoring, including the quantification of the impacts of urbanization, earth surface temperature, the decrease in green areas, and the effects of various land uses in the city, among others. Furthermore, they enable prospective modeling exercises, establishing possible occupancy scenarios aimed at implementing policies for efficient land development and management.
Downloads
References
Ahmed, H. A.; Singh, S.K.; Kumar,M.; Maina, M.S. & Dzwairo R. (2020). Impact of urbanization and land cover change on urban climate: Case study of Nigeria. Urban Climate Volume 32, June 2020, 100600.
Bhagawat, R.; Roshan S.; Ripu, K.; Hamidreza, K.; Nigel, E. C.; Sushila, R.; Syed Ajijur, R.; Himlal, B. (2019). Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosystem Services. Volume 38, August 2019.
Bozzano, H.; Carut, C.; Barbetti, C.; Cirio, G. & Arrivillaga, N. (2008). Usos del suelo y lugares: Criterios teórico-metodológicos. Aplicación a un caso en Guatemala Revista Universitaria de Geografía, vol. 17, pp. 189-231 Universidad Nacional del Sur Bahía Blanca, Argentina.
Breiman, L.; Friedman, J.; Stone, C. J.; & Olshen, R. A. (1984). Classification and Regression Trees. Taylor & Francis.
Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Carter, J. G. (2018). Urban climate change adaptation: Exploring the implications of future land cover scenarios. Cities Volume 77, July 2018, Pages 73-80
Chen, J.; Yang, K.; Chen, S.; Yang, C.; Zhang, S. & He, L. (2019). Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale, Journal of Applied Remote Sensing, Vol. 13 Issue 01, p. 1.
Chuvieco Salinero, E. (1985). Anales de Geografía de la Universidad Complutense, atén. 5. Ed. Univ. Complutense.
Ferrelli, F.; Piccol, M. C. (2017). Estudio del confort climático a escala micro-local. El caso de Bahía Blanca (Argentina) Revista Bitácora Urbano Territorial, vol. 27, núm. 3, septiembre-diciembre, 2017, pp. 91- 100 Universidad Nacional de Colombia Bogotá, Colombia.
Foody, G; See, L; Fritz, S.; Mooney, P.; Olteanu-Raimond, A-M; Fonte, C. C. and Antoniou, V. eds. (2017). Mapping and the Citizen Sensor. London: Ubiquity Press. DOI: https://doi.org/10.5334/bbf. License: CC-BY 4.0
Ghandour, A. J. & Jezzini, A.A. (2018). Autonomous Building Detection Using Edge Properties and Image Color Invariants. Buildings 2018, 8, 65. https://doi.org/10.3390/buildings8050065
Gómez, L. F. (2019). Simulación de escenarios futuros de cambios de usos del suelo usando Redes Neuronales Artificiales. Aplicación en la ciudad de Curuzú Cuatiá, Corrientes, Argentina. Estudio socio territoriales. Revista de Geografía. Centro de Investigaciones Geográficas CIG/IGEHCS FCH UNCPBA/CONICET
Merlotto, A.; Piccolo M. C. & Bértola, R. ( 2012), Crecimiento urbano y cambios del uso/ cobertura del suelo en las ciudades de Necochea y Quequén, Buenos Aires, Argentina. Revista Geografía Norte Grande N°53 pág. 159-176
Molero Melgarejo, E.; Grindlay Moreno, A. L. & Asensio Rodríguez, J. J. (2007). Escenarios de aptitud y modelización cartográfica del crecimiento urbano mediante técnicas de evaluación multicriterio”, GeoFocus (Artículos), nº 7, p. 120- 147. ISSN: 1578-5157
Paegelow, M.; Camacho Olmedo, M. T. y Menor Toribio, J. (2003). Cadenas de Markov, evaluación multicriterio y evaluación multiobjetivo para la modelización prospectiva del paisaje, GeoFocus (Artículos), nº 3, 2003, p. 22-44. ISSN: 1578-5157
Salvioli, M. L.; Guerrero-Borges & V. Cipponeri, M. (2022). Aplicación de indicadores ambientales para la planificación del uso del suelo en una zona costera de Buenos Aires, Argentina. Revista U.D.C.A Actualidad & Divulgación Científica. Vol. 25. Bogotá, Colombia.
Tibshirani, R. J. & Efron, B. (1994). An Introduction to the Bootstrap. Chapman and Hall/CRC. https://doi.org/10.1201/9780429246593
Viana C. y Rocha, J. (2020). Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless StochasticMethod. Sustainability | Free Full-Text | Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method (mdpi.com)
Ying Zhang & Lixin Sun (2019). Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. International Journal of Applied Earth Observation and Geoinformation. Vol. 75, Pages 171-181.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
CUADERNO URBANO sustains its commitment to the Open Access policies for scientific information, on account of the fact that both scientific publications and public funded research must circulate freely on the Internet and without restrictions.
CUADERNO URBANO ratifies the Open Access model in which the contents of scientific publications are available in full text free of charge on the Internet, without temporary embargoes, and whose editorial production costs are not transferred to the authors. This policy proposes breaking down the economic barriers that generate inequities both in access to information and in the publication of research results.