Efficacy of SNAP DUO ST Plus and HPLC in the detection of antibiotic residues in raw milk from the Mantaro Valley, Peru
DOI:
https://doi.org/10.30972/vet.3617987Keywords:
Milk diagnostic tests, Rapid screening, Sensitivity, Specificity, Cost- effectivenessAbstract
The objective of the present study was to determine and compare the efficacy of SNAP DUO ST Plus and HPLC in the detection of antibiotic residues in milk produced to ensure food safety. To this end, raw milk samples from 32 dairy herds and 8 collection centers were evaluated using the SNAP DUO* ST Plus rapid test for tetracyclines and β-lactams, and the high-performance liquid chromatography (HPLC) method. The analysis was conducted in laboratories at the National University of the Center of Peru. A total of 80 milk samples were analyzed, with antibiotic residues found in 37.5% of the samples using SNAP DUO, and in 52.5% using HPLC. The SNAP DUO test showed substantial agreement with HPLC (Kappa=0.734), with a sensitivity and specificity of 89.3% and 95.3%, respectively, compared to 100% for HPLC. In terms of cost-effectiveness, HPLC presented a higher cost per correctly identified result (S/ 20.27) compared to SNAP DUO (S/ 7.24), which was identified as the most efficient method. The implementation of SNAP DUO in antimicrobial residue monitoring programs in milk is recommended due to its effectiveness and efficiency, while HPLC is ideal for research and corroboration of results, contributing to the improvement of food safety in milk consumption.
Downloads
References
Adabi M, Reza Faryabi M, Nili-Ahmadabadi A, Gharekhani J, Mehri F. Evaluation of tetracycline antibiotics residues in chicken tissues using the four-plate test, ELISA, and HPLC methods in Iran. J. Environ. Anal. Chem. 2024; 104(9): 2014-2023.
Anika TT, Al Noman Z, Ferdous MRA, Khan SH, Mukta MA, Islam MS, Hossain MT, Rafiq K. Time dependent screening of antibiotic residues in milk of antibiotics treated cows. J. Adv. Vet. Anim. Res. 2019; 6(4): 516.
Arbo LMD, Céspedes LG, Idoyaga H, Echeverría P, Giménez Caballero E, Arias MN, Bernal SS, Ulke G, Desvars AB, Pizarro F. Detección de residuos de antibióticos y micotoxinas en leche vacuna fluida pasteurizada comercializada en Paraguay. Rev. salud pública parag. 2020; 10(2): 23-29.
Bakeman R. KappaAcc: A program for assessing the adequacy of kappa. Behav. Res. Methods. 2023; 55(2): 633-638.
Beltrán MC, Borràs M, Nagel O, Althaus RL, Molina MP. Validation of receptor-binding assays to detect antibiotics in goat’s milk. J. Food Prot. 2014; 77(2): 308-313.
Cámara M, Gallego-Picó A, Garcinuño RM, Fernández-Hernando P, Durand-Alegría JS, Sánchez PJ. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk. Food Chem. 2013; 141(2): 829-834.
Carhuas JN, Capcha KB, Garcia-Olarte E, Eulogio CQ. Production performance of rejected newborn lambs fed with different concentrations of whey in Perú. Rev. Ciênc. Agrovet. 2024; 23(2): 231-239.
Diego EA, Rodrigo HJ, Manuelv CV, Paul MM, Luis CPJ, Alfonso CF, Carhuas JN. Rumen kinetics of nutrient degradability of forage barley (Hordeum vulgare L.) with different levels of quinoa (Chenopodium quinoa) residues supplementation. Vet. Integr. Sci. 2024; 22(3): 1073-1087.
Estremadoyro LJG, Salome PH, Carhuas JN, Guzman SO, Tacza AA, Guillen MAF, Garcia-Olarte E. Effects of Different Seasons on Milk Quality: A Study on Two Cattle Breeds in Rainy and Drought Contexts. World’s Vet. J. 2024; 14(2): 213-219.
Fatemi F, Alizadeh Sani M, Noori SMA, Hashemi M. Status of antibiotic residues in milk and dairy products of Iran: a systematic review and meta-analysis. J. Environ. Health Eng. 2024; 22(1): 31-51.
Fejzić N, Begagić M, Šerić-Haračić S, Smajlović M. Beta lactam antibiotics residues in cow’s milk: comparison of efficacy of three screening tests used in Bosnia and Herzegovina. Bosn. J. Basic Med. Sci. 2014; 14(3): 155.
Garcia-Olarte E, Carhuas JN, Guillen MAF, Tacza AA, Ramos EER. Physicochemical composition of Criollo and Criollo x Saanen. Online. J. Anim. Feed Res. 2024; 14(2): 116-123.
Getahun M, Abebe RB, Sendekie AK, Woldeyohanis AE, Kasahun AE. Evaluation of antibiotics residues in milk and meat using different analytical methods. J. Anal. Chem. 2023; 2023(1): 4380261.
Gómez RJM. General technological scheme and processing parameters in cheeEEsemaking. Revista Fac. Agron. 2023; 178-178.
Gordillo JJT, Rodríguez VHP. Cálculo de la fiabilidad y concordancia entre codificadores de un sistema de categorías para el estudio del foro online en e-learning. Rev. Inves. Educ. 2009; 27(1): 89-103.
Haseeb F. Comparative study to detect antibiotic residues in processed and raw milk in lahore. Pak. J. Sci. 2023; 75(04): 697-709.
Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977; 33(1): 159-174.
Lee JB, Chung HH, Chung YH, Lee KG. Development of an analytical protocol for detecting antibiotic residues in various foods. Food Chem. 2007; 105(4): 1726-1731.
Llanos G. Determinación de residuos de antibióticos en la leche fresca que consume la población de Cajamarca, Perú. Rev. Amazónica Inves. Alim. 2002; 2(2): 35-43.
Máttar S, Calderón A, Sotelo D, Sierra M, Tordecilla G. Detección de Antibióticos en Leches: Un Problema de Salud Pública. Rev. Salud Pública. 2009; 11(4), 579-590.
Muir JM, Radhakrishnan A, Ozer Stillman I, Sarri G. Health Equity Considerations in Cost-Effectiveness Analysis: Insights from an Umbrella Review. Clinicoecon. Outcomes Res. 2024; 581-596.
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals. 2023; 16(11): 1615.
Noa-Pérez M, Ruvalcaba-Barrera S, Torres-Morán JP, Reynoso-Orozco R, Jaime-Ornelas TdJ. Control de residuos de antibióticos en leche cruda en una empresa lechera en Jalisco México: estudio retrospectivo. E-CUCBA. 2021 16: 01-05.
Noreña AL, Alcaraz-Moreno N, Rojas J G, Rebolledo Malpica D. Applicability of the Criteria of Rigor and Ethics in Qualitative Research. Aquichan. 2012 12(3): 263-274.
Patel NM, Kumar R, Savalia CV, Desai DN, Kalyani IH. Dietary exposure and risk assessment of antibiotics residues in marketed bovine raw milk. J. Entomol. Zool. Stud. 2020; 8(4): 1823-1827.
Perreten V, Giampà N, Schuler-Schmid U, Teuber M. Antibiotic Resistance Genes in Coagulase-negative Staphylococci Isolated from Food. Syst. Appl. Microbiol. 1998; 21(1): 113-120.
Pita FS, Pértegas DS. Metodología investigación: Pruebas diagnósticas: Sensibilidad y especificidad [ACADEMICA]. 2010. Disponible en: www.fisterra.com. https://www.fisterra.com/formacion/metodologia-investigacion/pruebas-diagnosticas sensibilidad-especificidad/ Último Acceso: 20/08/24.
Pitino MA, O’Connor DL, McGeer AJ, Unger S. The impact of thermal pasteurization on viral load and detectable live viruses in human milk and other matrices: a rapid review. Appl. Physiol. Nutr. Metab. 2021; 46(1): 10-26.
Puga-Torres B, Aragón E, Contreras A, Escobar D, Guevara K, Herrera L, López N, Luje D, Martínez M, Sánchez L, Tapia D, Villareal T, Núñez L. Analysis of quality and antibiotic residues in raw milk marketed informally in the Province of Pichincha–Ecuador. Food Agric. Immunol. 2023; 35(1): 2291321.
Rajia S, Fujii Y, Kawsar SM, Ozeki Y, Jahan S, Hasan I. Effectiveness of Microbiological Assays as an Alternative Method to Determine the Potency of Antibiotics: A Review. Hacet. University J. Fac. Pharmacy. 2024; 44(2): 153-164.
Redwan HA, Sarker M, Das R, Azad MAK, Hasan MM. A review on antibiotic residue in foodstuffs from animal source: global health risk and alternatives. J. Environ. Anal. Chem. 2023; 103(16): 3704-3721.
Sachi S, Ferdous J, Sikder MH, Azizul Karim Hussani SM. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019; 6(3): 315-332.
Salas PZ, Calle SE, Falcón TN, Pinto JC, Espinoza BJ. Determinación de residuos de antibióticos betalactámicos mediante un ensayo inmunoenzimático en leche de vacas tratadas contra mastitis. Rev. Inv. Vet. Perú. 2013; 24(2): 252-255.
Samanidou V, Nisyriou S. Multi-residue methods for confirmatory determination of antibiotics in milk. J. Sep. Science. 2008; 31: 2068-2090.
Subbiah V. The next generation of evidence-based medicine. Nat. Med. 2023; 29(1): 49-58.
Talero-Pérez YV, Medina OJ, Rozo-Núñez W. Técnicas analíticas contemporáneas para la identificación de residuos de sulfonamidas, quinolonas y cloranfenicol. Un. Scientiarum. 2014; (1): 11-29.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Revista Veterinaria (Rev. Vet.) maintains a commitment to the policies of Open Access to scientific information, as it considers that both scientific publications as well as research investigations funded by public resources should circulate freely without restrictions. Revista Veterinaria (Rev. Vet.) ratifies the Open Access model in which scientific publications are made freely available at no cost online.