Genotoxicity of pesticides: the role of non-active ingredients

Authors

  • C. Pardiñas Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria https://orcid.org/0009-0003-3689-0367
  • F. Pellegrino Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria https://orcid.org/0000-0001-8538-141X
  • G. Padula Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria. Facultad de Ciencias Naturales https://orcid.org/0000-0001-5390-0043
  • A. Seoane Consejo Nacional de Investigaciones Científicas y Técnicas. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria https://orcid.org/0000-0001-9908-538X

DOI:

https://doi.org/10.30972/vet.3618111

Keywords:

Amitraz, cell viability test, genotoxicity, quantitative comet assay, micronucleus test, cell cultures

Abstract

Amitraz is a formamidine-based insecticide and acaricide used in veterinary applications. Despite the use of various genetic assessment criteria and testing systems to investigate amitraz poisoning, studies have yielded diverse and inconclusive results. This study aimed to analyze the genotoxic potential of the insecticide amitraz and compare the effects of the active constituent and a commercial product containing amitraz. Chinese hamster ovary cells were cultured during one cellular cycle in Ham F12 medium containing 1.25, 2.5 and 3.75 μg mL-1 of amitraz. Quantitative comet and cytokinesis-block micronucleus assay were employed to evaluate the potential genotoxic effect. All genotoxicity parameters evaluated clearly demonstrated the capability of the commercial amitraz formulation to negatively affect DNA, inducing both cytogenetic and cytomolecular damage. After culturing the cells with the active component of the formula, only a slight, non-significant increase in damage was found. Since our findings showed that the active component of the formula is not the sole responsible for the genotoxic effect of the commercial product, we emphasize the importance of considering the adverse effects of the solvents used in commercial pesticide formulations.

Downloads

References

Avsarogullari L, Ikizceli I, Sungur M, Sozuer E, Akdur O, Yucei M. Acute amitraz poisoning in adults: clinical features, laboratory findings, and management. Clin. Toxicol. 2006; 44: 19-24.

Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat. Res. 2003; 543: 251-272.

Caprotta CG, Martinez M, Tiszler M, Guerra V. Amitraz poisoning. Arch. argent. Pediatr. 2009; 107: 449-458.

Carranza-Martin AC, Fabra MC, Urrutia Luna N, Farnetano N, Anchordoquy JP, Anchordoquy JM, Picco SJ, Furnus CC, Nikoloff N. In vitro adverse effects of amitraz on semen quality: Consequences in bovine embryo development. Theriogenology. 2023; 199:106-113.

del Pino J, Moyano-Cires PV, Anadon MJ, Díaz MJ, Lobo M, Capo MA, Frejo MT. Molecular mechanisms of amitraz mammalian toxicity: a comprehensive review of existing data. Chem Res Toxicol. 2015; 28(6):1073-1094.

Dhooria S, Agarwal R. Amitraz, an underrecognized poison: A systematic review. Indian J Med Res. 2016; 144: 348-358.

Fenech M, Chang WP, Kirsch-Volders M, Holland N, Bonassi S, Zeiger E. HUuman MicronNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat. Res. 2003; 534: 65-75.

Fenech M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007; 2: 1084-1104.

Fereydooni S, Arfaee F, Youssefi M, Zahra F, Gharib F, Tabari M. In vitro toxicity of combination of amitraz and carvacrol on Demodex canis. Open Vet. J. 2023; 13: 894-902.

Giorgini M, Taroncher M, Tolosa J, Ruiz MJ, Rodríguez-Carrasco Y. Amitraz and its metabolites: oxidative stress-mediated cytotoxicity in hepG2 cells and study of their stability and characterization in honey. Antioxidants. 2023; 12(4): 885.

Ghosh S, Ojha PK, Carnesecchi E, Lombardo A, Roy K, Benfenati E. Exploring QSAR modeling of toxicity of chemicals on earthworm. Ecotoxicol Environ Saf. 2020; 190: 110067.

Hu S, Benner C, White J, Martin R, Feenstra K. Pharmacokinetics and brain distribution of amitraz and its metabolites in rats. Environ Toxicol Pharmacol. 2019; 65: 40-45.

Khan SJ, Roser DJ, Davies CM, Peters GM, Stuetz RM, Tucker RNJ. Ashbolt chemical contaminants in feedlot wastes: concentrations, effects and attenuation. Environ. Int. 2008; 34: 839-859.

Kim K, Kabir E, Jahan S. Exposure to pesticides and the associated human health effects. Sci Total Environ. 2017; 575: 525-535.

Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A. A cross-platform public domain PC image-analysis program for the comet assay. Mut. Res. 2003; 534: 15-20.

Marafon CM, Delfim CI, Valada CA, Menotti R, Andrade SF. Analysis of amitraz in cats by gas chromatography. J. Vet. Pharmacol. Ther. 2009; 33: 411-414.

Mnif W, Hassine A, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: A review. Int J Environ Res Public Health. 2011; 8(6): 2265-2303.

Moro AM, Brucker N, Charão M, Bulcão R, Freitas F, Baierle M, Nascimento S, Valentini J, Cassini C, Salvador M, Linden R, Thiesen F, Buffon A, Moresco R, Garcia SC. Evaluation of genotoxicity and oxidative damage in painters exposed to low levels of toluene. Mut. Res. 2012; 746: 42-48.

Nanjundappa S, Narayanan S, Darsana Udayan N, Kanapadinchareveetil S, Jacob M, Ravindran R, Juliet S. Disposition Kinetics of Amitraz in Lactating Does. Molecules. 2021; 26: 4769-4772.

Nikoloff N, Carranza Martin A, Fabra C, Furnus C. Amitraz induced cytotoxic effect on bovine cumulus cells and impaired oocyte maturation. Environ Sci Pollut Res. 2021; 28: 29188-29199.

Olive P. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol. 1999; 75: 395-405.

Osano O, Oladimeji AA, Kraak MH, Admiraal W. Teratogenic effects of amitraz, 2,4-dimethylaniline, and paraquat on developing frog (Xenopus) embryos. Arch Environ Contam Toxicol. 2002; 43: 42-49.

Padula G, Ponzinibbio MV, Picco S, Seoane A. Assessment of the adverse effects of the acaricide amitraz: in vitro evaluation of genotoxicity. Toxicol. Mech. Methods. 2012; 22: 657-666.

Proudfoot AT. Poisoning with amitraz. Toxicol. Rev. 2003; 22: 71-74.

Prueitt RL, Rhomberg LR, Goodman JE. Hypothesis-based weight-of-evidence evaluation of the human carcinogenicity of toluene diisocyanate. Crit. Rev. Toxicol. 2013; 43: 391-435.

Radakovic M, Stevanovic J, Djelic N, Lakic N, Knezevic-Vukcevic J, Vukovic-Gacic B, Stanimirovic Z. Evaluation of the DNA damaging effects of amitraz on human lymphocytes in the Comet assay. J. Biosci. 2013; 38: 53-62.

Roberts J, Reigart R. Recognition and Management of Pesticide Poisoning, US EPA Office of Pesticide Programs, 2013; Sixth Edition.

Rojas-García A, Solís-Heredia M, Paredes S, Pérez-Maldonado I. Occupational exposure to pesticides and DNA damage in workers from the state of Nayarit, Mexico. Environ Sci Pollut Res. 2011; 18: 987-996.

Singh NP, Mc Coy M, Tice R, Schneider E. A simple technique for quantization of low levels of DNA damage in individual cells. Exp. Cell Res. 1988; 175: 184-191.

Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015; 111: A3.B.1-A3.B.3.

Tice R, Strauss G. The single cell gel electrophoresis/comet assay: a potential tool for detecting radiation-induced DNA damage in humans. Stem Cells. 1995; 13: 207-214.

Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J, Sasaki Y. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000; 35: 206-221.

USEPA (United States Environmental Protection Agency). Amitraz Reregistration Eligibility Decision (RED), Case 0234. (EPA-738-F-96-031), US Environmental Protection Agency, Office of Prevention, Pesticide and Toxic Substances, Washington, DC. 1996.

Ulukaya S, Demirag K, Moral AR. Acute amitraz intoxication in human. Intensive Care Med. 2001; 27: 930-933.

Wang F, Li C, Liu W, Jin Y. Oxidative damage and genotoxic effect in mice caused by sub-chronic exposure to low-dose volatile organic compounds. Inhal. Toxicol. 2013; 25: 235-242.

Westermann CM, Boerma S, van Nieuwstadt RA. Amitraz intoxications in the horse: cases and backgrounds. Tijdschr Diergeneeskd. 2004; 129: 438-441.

Young FM, Phungtamdet W, Sanderson BJS. Modifi cation of MTT assay conditions to examine the cytotoxic effects of amitraz on the human lymphoblastoid cell line, WIL2NS. Toxicol. in Vitro. 2005; 9: 1051-1059.

Downloads

Published

2025-03-06 — Updated on 2025-03-06

Versions

How to Cite

Pardiñas, C., Pellegrino, F., Padula, G., & Seoane, A. (2025). Genotoxicity of pesticides: the role of non-active ingredients. Revista Veterinaria, 36(1), 1–6. https://doi.org/10.30972/vet.3618111

Issue

Section

Artículos