From preliminary data to robust design: sample estimation for Anaplasma phagocytophilum and other prevalence studies

Authors

DOI:

https://doi.org/10.30972/vet.3719106

Keywords:

Prevalence studies, Precision, Sample size, ScalaR

Abstract

Accurate sample size estimation is essential in prevalence studies to ensure statistically valid conclusions and efficient resource allocation. This technical note presents an approach for estimating sample size in prevalence studies of Anaplasma phagocytophilum in equines. A preliminary PCR-based survey in Panama detected one positive case among 36 animals (2.78%). Based on these results, expected prevalences of 2%, 3%, 8%, and 9% were used to model future sample sizes using the ScalaR function in R, incorporating absolute precisions (± 0.75%, ± 1.5%, ± 2%) and a 10% adjustment for potential data loss. The estimated sample sizes ranged from 233 (2% prevalence, ± 1.9%) to 6,216 animals (9% prevalence, ± 0.75%). These findings illustrate how minor variations in assumed prevalence or desired precision can substantially influence the sample size required for reliable epidemiological surveillance.

Downloads

Download data is not yet available.

References

1. Abdallah JM. A review of sample size determination for common experimental designs: further simplified equations. An-Najah Univ. J. Res. A (Nat. Sci.) 2024; 38(1): 8-16.

2. Bermúdez SE, Félix ML, Domínguez L, Kadoch N, Muñoz-Leal S, Venzal JM. Molecular screening for tick-borne bacteria and hematozoa in Ixodes cf. boliviensis and Ixodes tapirus (Ixodida: Ixodidae) from western highlands of Panama. Curr. Res. Parasitol. Vector-Borne Dis. 2021; 1: 100034.

3. Choubdar N, Karimian F, Koosha M, Nejati J, Oshaghi MA. Hyalomma spp. ticks and associated Anaplasma spp. and Ehrlichia spp. on the Iran-Pakistan border. Parasites Vectors. 2021; 14(1): 469.

4. Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004; 42(7): 3164-8.

5. Dugat T, Lagrée AC, Maillard R, Boulouis HJ, Haddad N. Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front. Cell. Infect. Microbiol. 2015; 5: 61.

6. Naing L, Nordin RB, Abdul Rahman H, Naing YT. Sample size calculation for prevalence studies using Scalex and ScalaR calculators. BMC Med. Res. Methodol. 2022; 22(1): 209.

7. OIRSA. Boletín No. 6 noviembre 2017-A. OIRSA 2018.

8. Párraga M, Gonzatti M, Aso P. Diagnosis of Venezuelan equine anaplasmosis by polymerase chain reaction. Rev. Cient. FCV-LUZ 2016; 26(6): 366-73.

9. Pourhoseingholi MA, Vahedi M, Rahimzadeh M. Sample size calculation in medical studies. Gastroenterol. Hepatol. Bed Bench 2013; 6(1): 14-7.

10. Prado LG, Palhares MS, Bastos CVE, Silveira JAGD, Ribeiro ÁAR, Miranda ALS, et al. Anaplasma phagocytophilum direct detection and exposure evidence in equines from two breeding farms from Minas Gerais State, Brazil. Arq. Inst. Biol. 2018; 85: 1-16.

11. Rikihisa Y, Lin M, Niu H. Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell. Microbiol. 2010; 12(9): 1213-21.

12. Rodríguez Jorquera P, Conejeros Ortiz C. Diagnóstico serológico de Anaplasma phagocytophilum en caballos Fina Sangre de Carrera pertenecientes al Valparaíso Sporting Club Viña del Mar. Av. Cienc. Vet. 2013; 27(2).

13. Schäfer I, Kohn B, Silaghi C, Fischer S, Marsboom C, Hendrickx G, Müller E. Molecular and serological detection of Anaplasma phagocytophilum in dogs from Germany (2008–2020). Animals 2023; 13(4): 720.

14. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021; 31(1): 27-53.

15. Vimonish R, Johnson WC, Mousel MR, Brayton KA, Scoles GA, Noh SM, Ueti MW. Quantitative analysis of Anaplasma marginale acquisition and transmission by Dermacentor andersoni fed in vitro. Sci. Rep. 2020; 10(1): 470.

16. Zhang D, Yu L, Tang H, Niu H. Anaplasma phagocytophilum AFAP targets the host nucleolus and inhibits induced apoptosis. Front. Microbiol. 2025; 15: 1533640.

Published

2026-02-04

How to Cite

Araúz, A., Santana Bolívar, Ángel, Morales Allard, J. A., De Sedas Muñoz, A., Añino Ramos, Y. J., Agrazal, K. J., & Romero, E. (2026). From preliminary data to robust design: sample estimation for Anaplasma phagocytophilum and other prevalence studies. Revista Veterinaria, 37(1), 1–4. https://doi.org/10.30972/vet.3719106

Issue

Section

Comunicaciones Breves