Presencia de bacterias resistentes a antimicrobianos en quirófanos de clínicas veterinarias de la ciudad de Villavicencio-Meta
DOI:
https://doi.org/10.30972/vet.3719103Palabras clave:
Antibióticos, resistencia antimicrobiana, infecciones nosocomialesResumen
Las infecciones del sitio quirúrgico son una de las complicaciones más comunes, y la presencia de bacterias multirresistentes en entornos quirúrgicos incrementa el riesgo de infecciones nosocomiales. En veterinaria, es necesario identificar estos agentes para comprender su impacto y fortalecer las medidas de bioseguridad. Este estudio tuvo como objetivo identificar bacterias resistentes a antimicrobianos en áreas quirúrgicas de clínicas veterinarias en Villavicencio-Meta. Se seleccionaron tres clínicas con sala quirúrgica, avaladas por la Secretaría de Salud. En cada una se recolectaron muestras en tres estratos (mesa quirúrgica, sistema de aireación y piso) y en tres momentos del procedimiento (preoperatorio, intraoperatorio y posoperatorio). Las muestras fueron sembradas en medios de cultivo especializados y posteriormente se realizó antibiograma. Los aislamientos correspondieron a Bacillus spp. y Staphylococcus spp., con mayor frecuencia de Bacillus spp. en el piso y el aire, y predominio de Staphylococcus spp. en la mesa quirúrgica. No hubo diferencias significativas entre momentos quirúrgicos (p = 0,731), ni entre superficies de la sala quirúrgica (p = 0,374), pero sí entre quirófanos de las clínicas (p = 0,004), mostrando variaciones en la carga microbiana entre establecimientos. Bacillus spp. presentó resistencia a ciprofloxacina y norfloxacina, mientras que Staphylococcus spp. a rifampicina y un comportamiento variable frente a ciprofloxacino y trimetoprim. Estos hallazgos subrayan la necesidad de reforzar los protocolos de limpieza, antisepsia y desinfección en los quirófanos veterinarios para disminuir el riesgo de infecciones nosocomiales y la diseminación de bacterias resistentes.
Descargas
Citas
1. Adamski P, Byczkowska-Rostkowska Z, Gajewska J, Zakrzewski AJ, Kłębukowska L. Prevalence and antibiotic resistance of Bacillus sp. isolated from raw milk. Microorganisms. 2023; 11(4): 1065.
2. Administración de Alimentos y Medicamentos de los Estados Unidos (FDA). Bacteriological Analytical Manual (BAM). FDA. 2024. Disponible en: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam. Último acceso diciembre 2025
3. Alsing-Johansson T, Bergström K, Sternberg-Lewerin S, Bergh A, Östlund E, Penell J. Environmental bacterial load during surgical and ultrasound procedures in a Swedish small animal hospital. Acta Vet Scand. 2024; 66(1): 43.
4. Akwuobu CA, Ngbede EO, Mamfe LM, Ezenduka EV, Chah KF. Veterinary clinic surfaces as reservoirs of multi-drug- and biocide-resistant Gram-negative bacteria. Access. Microbiol. 2021; 3(5): 000277.
5. Arroyave E, Uribe-Buriticá J, Granados-Acevedo S, Gutiérrez LA, Arismendi LM, Vidal LA. Aislamiento e identificación de bacterias con potencial nosocomial procedentes de ambientes y superficies de una clínica veterinaria universitaria del Área Metropolitana del Valle de Aburrá, Antioquia-Colombia. Infectio. 2019; 23(3): 227-233.
6. Assadian O, Harbarth S, Vos M, Knobloch JK, Asensio A, Widmer AF. Practical recommendations for routine cleaning and disinfection procedures in healthcare institutions: a narrative review. J. Hosp. Infect. 2021; 113: 104-114.
7. Atalay YA, Mengistie E, Tolcha A, Birhan B, Asmare G, Gebeyehu NA, Gelaw KA. Indoor air bacterial load and antibiotic susceptibility pattern of isolates at Adare General Hospital in Hawassa, Ethiopia. Front. Public. Health. 2023; 11: 1194850.
8. Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen. 2023; 12(1): e1338.
9. Bortoli ACR, Tramontini CC, Oliveira KS, Galassi AD, Vespero EC, Castilho POS. Contaminação microbiana em superfícies de salas operatórias: um estudo transversal. Rev SOBECC. 2025;30:e1016.
10. Bashir N, Dablool AS, Khan MI, Almalki MG, Ahmed A, Mir MA, Hamdoon AA, Elawad MA, Mosa OF, Niyazov LN, Elkhalifa MEM, Alghamdi MA, Anwar A, Ayaz M. Antibiotics resistance as a major public health concern: A pharmaco-epidemiological study to evaluate prevalence and antibiotics susceptibility-resistance pattern of bacterial isolates from multiple teaching hospitals. J. Infect. Public. Health. 2023; 16(Suppl 1): 61-68.
11. Bintsis T. Foodborne pathogens. AIMS Microbiol. 2017;3(3):529-563.
12. Biolife Italiana. MYP Agar Base – Technical Sheet. 2020. Disponible en: https://gest.joyadv.it/public/cartellina-allegati-schede-certificazioni/schede-tecniche-inglese/TS-4011112.pdf. Último acceso 2 de julio de 2025.
13. Byers CG. Biosecurity measures in clinical practice. Vet. Clin. North. Am. Small Anim. Pract. 2020; 50(6): 1277-1287.
14. Bucataru A, Balasoiu M, Ghenea AE, et al. Factors Contributing to Surgical Site Infections: A Comprehensive Systematic Review of Etiology and Risk Factors. Clin Pract. 2023;14(1): 52-68.
15. Casini B, Tuvo B, Scarpaci M, Totaro M, Badalucco F, Briani S, Luchini G, Costa AL, Baggiani A. Implementation of an Environmental Cleaning Protocol in Hospital Critical Areas Using a UV-C Disinfection Robot. Int J Environ Res Public Health. 2023; 20(5): 4284.
16. Chawla K, Vishwanath S, Munim FC. Bacteriological profile of air and surfaces of operation theatres. J. Clin. Diagn. Res. 2021; 15(3): DC01–DC04.
17. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 30th ed. CLSI supplement M100. Wayne, PA: CLSI; 2020.
18. Comenius University, Jessenius Faculty of Medicine. Staphylococci – Blood Agar Morphology. 2018. Disponible en: https://www.jfmed.uniba.sk/fileadmin/jlf/Pracoviska/ustav-mikrobiologie-a-imunologie/VLa/STAPHYLOCOCCI.pdf. Último acceso 2 de Julio de 2025.
19. European Committee on Antimicrobial Susceptibility Testing (EUCAST). EUCAST guidance on when there are no breakpoints in breakpoint tables. Växjö: EUCAST; 2024. Updated Sep 2024.
20. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoint Tables v. 15.0, valid from 2025-01-01. EUCAST; 2025. Disponible en: https://www.eucast.org/bacteria/clinical-breakpoints-and-interpretation/clinical-breakpoint-tables/
21. Farina D, Bianco A, Manzulli V, Castellana S, Parisi A, Caruso M, Fraccalvieri R, Serrecchia L, Rondinone V, Pace L, Fasanella A, Vetritto V, Difato LM, Cipolletta D, Iatarola M, Galante D. Antimicrobial and phylogenomic characterization of Bacillus cereus group strains isolated from different food sources in Italy. Antibiotics. 2024; 13(9): 898.
22. Fu M, Zhang Y, Hu J, Lei M, Gan K. Measuring dynamic air quality assessment in clean operating rooms using three methods: a prospective study. J. Hosp. Infect. 2025; 168: 169-177.
23. Gdoura-Ben Amor M, Siala M, Zayani M, Grosset N, Smaoui S, Messadi-Akrout F, Baron F, Jan S, Gautier M, Gdoura R. Aislamiento, identificación, prevalencia y diversidad genética de bacterias del grupo Bacillus cereus en diferentes alimentos de Túnez. Front. Microbiol. 2018; 9: 447.
24. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020; 10: 107.
25. Haque MA, Hu H, Liu J, Islam MA, Hossen F, Rahman MA, Ahmed F, He C. Emergence of multidrug-resistant Bacillus spp. derived from animal feed, food and human diarrhea in South-Eastern Bangladesh. BMC Microbiol. 2024; 24(1): 61.
26. Harper TA, Bridgewater S, Brown L, Pow-Brown P, Stewart-Johnson A, Adesiyun AA. Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infect. Ecol. Epidemiol. 2013; 3: 10.3402
27. Hunter ND, Hoet AE, van Balen J, Stull JW. Longitudinal environmental Staphylococcus contamination in a new small animal veterinary hospital and utility of cleaning checklists. Zoonoses Public Health. 2021; 68(8): 947-954.
28. Hrynyshyn A, Simões M, Borges A. Biofilms in surgical site infections: Recent advances and novel prevention and eradication strategies. Antibiotics (Basel). 2022; 11(1): 69.
29. Kabir MS, Hsieh YH, Simpson S, Kerdahi K, Sulaiman IM. Evaluation of Two Standard and Two Chromogenic Selective Media for Optimal Growth and Enumeration of Isolates of 16 Unique Bacillus Species. J. Food Prot. 2017; 80(6): 952-962.
30. Kalicha B, Aliyo A, Daka D, Gamachu T, Husen O, Solomon Z. Bacterial surgical site infections: Prevalence, antimicrobial susceptibility patterns, and associated risk factors among patients at Bule Hora University Teaching Hospital, Southern Ethiopia. IJID. Regions. 2025; 14: 100565.
31. Kubota N, Kobayashi J, Kasai A, Nasuno M, Murai T, Minami K, Ohta M. Detection of Bacillus cereus as a causative agent of emetic food poisoning by an unconventional culture procedure. J. Infect. Chemother. 2022; 28: 1575-1577.
32. Leite DPSBM, Barbosa IC, da Silva RA, Fernandes PR, Abad ACA, da Silva JG, Mota RA, Porto TS. Occurrence of antimicrobial-resistant Staphylococcus aureus in a Brazilian veterinary hospital environment. Braz. J. Microbiol. 2023; 54(3): 2393-2401.
33. MacFaddin JF. Biochemical tests for identification of medical bacteria. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2000.
34. Mahon CR, Lehman DC. Staphylococci and other catalase-positive cocci. In: Forbes BA, Sahm DF, Weissfeld AS, editors. Bailey & Scott's Diagnostic Microbiology. 12th ed. St. Louis: Mosby Elsevier; 2007. p. 254-271.
35. Tomé-Méndez AV, Salinas‑Granell MB, López‑Figueras AI, Simón‑Sacristán M, Cáceres‑Bermejo GG, Alonso‑Peña MJ, Guerra‑Sánchez MP, Arias‑Sanz P. Determinación de la presencia de microorganismos patógenos en superficies de quirófanos de cirugía experimental y animalario. Sanid. mil. 2024; 80(3): 132-139.
36. Menezes MP, Borzi MM, Ruaro MA, Cardozo MV, Rabelo RC, Verbisck NV, Moraes PC. Multidrug-resistant bacteria isolated from the surgical site of dogs, a surgeon’s hands and an operating room in a veterinary teaching hospital in Brazil. Top Companion Anim. Med. 2022; 49: 100638.
37. Mellinghoff SC, Bruns C, Albertsmeier M, Ankert J, Bernard L, Budin S, Bataille C, Classen AY, Cornely FB, Couvé-Deacon E, Fernandez Ferrer M, Fortún J, Galar A, Grill E, Guimard T, Hampl JA, Wingen-Heimann S, Horcajada JP, Köhler F, Koll C, Mollar J, Muñoz P, Pletz MW, Rutz J, Salmanton-García J, Seifert H, Serracino-Inglott F, Soriano A, Stemler J, Vehreschild JJ, Vilz TO, Naendrup JH, Cornely OA, Liss BJ. Staphylococcus aureus surgical site infection rates in 5 European countries. Antimicrob Resist Infect Control. 2023;12(1):104.
38. Moretti G, Pollicino G, Passamonti F, Peteoacá A, Dimeo A, Bufalari A. Preliminary study on evaluation of the intraoperative bacterial contamination of the surgical wound in small animals. Revista Científica Agrolife. 2020; 9(1): 229-236.
39. Murray PR, Rosenthal KS, Pfaller MA. Medical Microbiology. 9th edition. Philadelphia, PA: Elsevier; 2020. 896 p.
40. Napoli C, Marcotrigiano V, Montagna MT. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres. BMC Public Health. 2012; 12: 594.
41. Omelyansky VL. Manual de Microbiología, Academia de Ciencias de la URSS, Moscú, Leningrado. 1940
42. Otter JA, Yezli S, French GL. The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infect. Control Hosp. Epidemiol. 2011; 32(7): 687-699.
43. Organización Mundial de la Salud (OMS). Resistencia a los antimicrobianos. OMS. 2024. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance. Último acceso: 18 julio 2025.
44. Pasquarella C, Pitzurra O, Savino A. Microbial air contamination in operating theatres: active and passive sampling. J. Hosp. Inf. 2012; 80(2): 129-134.
45. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Nat. Rev. Microbiol. 2015; 13(10): 575-588.
46. Prasek K, Kiersnowska I, Wójkowska-Mach J, Różańska A, Romaniszyn D, Foryciarz E, Kwiećkowska LB, Krzych-Fałta E. Microbial contamination on high-touch surfaces in outpatient clinics: identification of bacterial strains from areas of patient and medical staff occupancy. Microorganisms. 2025; 13(3): 698.
47. Ramlucken U, Ramchuran S, Moonsamy G, Lalloo R, Thantsha M, Jansen van Rensburg C. Survival and persistence of Bacillus cereus in clinical environments. Food Control. 2021; 127: 108100.
48. Rattray J, Walden R, Lowton R, Marquez P, Solis-Lemus C, Alarcon C, Brown DS. Machine learning identification of Pseudomonas aeruginosa strains from colony image data. PLoS Comput. Biol. 2023; 19(7): e1011699.
49. Rizzo CE, Venuto R, Tripodi P, Bartucciotto L, Ventura Spagnolo E, Nirta A, Genovese G, La Spina I, Sortino S, Nicita A. From guidelines to action: tackling risk factors for surgical site infections. Antibiotics (Basel). 2025; 14(1): 40.
50. Rodríguez Nájera GF, Camacho Barquero FA, Umaña Bermúdez CA. Factores de riesgo y prevención de infecciones del sitio quirúrgico. Revista Médica Sinergia. 2020; 5(4): e444.
51. Rutala WA, Weber DJ. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: A bundle approach. Am J Infect Control. 2019; 47S: A96-A105.
52. Sánchez MP, Gutiérrez NP, Padilla MY, Suárez LL. Resistencia antimicrobiana de bacterias aisladas de clínicas veterinarias de la ciudad de Ibagué, Colombia. Univ. Salud. 2015; 17(1): 18-31.
53. Sebola LF, Oguttu JW, Kock MM, Qekwana DN. Hospital-acquired and zoonotic bacteria from a veterinary hospital and their associated antimicrobial susceptibility profiles: a systematic review. Front. Vet. Sci. 2023; 9:1087052.
54. Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med. 2021; 31(1): 010502.
55. Sfaciotte RAP, Parussolo L, Melo FD, Bordignon G, Israel ND, Salbego FZ, Wosiacki SR, Ferraz SM. Detection of the main multiresistant microorganisms in the environment of a teaching veterinary hospital in Brazil. Pesq Vet Bras. 2021; 41: e06706.
56. Sizar O, Leslie SW, Unakal CG. Gram-positive bacteria. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470553/.
57. Stella AE, Lima TF, Moreira CN, De Paula EMN. Characterization of Staphylococcus aureus strains isolated from the veterinary hospital environment. Vet Microbiol. 2020; 244: 108717.
58. Stevanović O, Dobrijević M, Vujanić D, Nedić D. Postoperative wound infection of hard palate with Klebsiella pneumoniae in a dog: Case report. Vet. J. Repub. Srp. 2019; 19 (2): 302-305.
59. Spratt HG, Millis N, Levine D, Brackett J, Millis D. Bacterial contamination of environmental surfaces of veterinary rehabilitation clinics. Animals. 2024; 14(13): 1896.
60. Stryja J. Surgical site infection and local management of the wound: Meta-analysis. Rozhl Chir. 2021; 100(7): 313-324.
61. Tallent SM, Kotewicz KM, Strain EA, Bennett RW. Efficient isolation and identification of Bacillus cereus group. J. AOAC. Int. 2021; 104(1): 113-119.
62. van der Merwe C, Naidoo V. Airborne bacteria in veterinary surgical theatres in South Africa. J. S. Afr. Vet. Assoc. 2023; 94(1): 130-144.
63. Velázquez-Guadarrama N, Olivares-Cervantes AL, Salinas E, Martínez L, Escorcia M, Oropeza R, Rosas I. Presence of environmental coagulase-positive staphylococci, their clonal relationship, resistance factors and ability to form biofilm. Rev. Argent. Microbiol. 2017; 49(1): 15-23.
64. Wißmann JE, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E. Persistence of pathogens on inanimate surfaces: A narrative review. Microorganisms. 2021; 9(2): 343.
65. Yimer RM, Alemu MK. Bacterial Contamination Level of Indoor Air and Surface of Equipment in the Operation Room in Dil-Chora Referral Hospital, Dire Dawa, Eastern Ethiopia. Infect. Drug Resist. 2022; 15: 5085-5097.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2026 María Camila González-Prada, Ivonne Natalia Gutiérrez-Triana, Carolina García, Adolfo Vásquez-Trujillo, Dumar Alexander Jaramillo Hernández

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Política de acceso abierto
Esta revista proporciona un acceso abierto inmediato a su contenido, basado en el principio de que ofrecer al público un acceso libre a las investigaciones ayuda a un mayor intercambio global de conocimiento. La publicación por parte de terceros será autorizada por Revista Veterinaria toda vez que se la reconozca debidamente y en forma explícita como lugar de publicación del original.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0)





.jpg)
.jpg)