Efecto de la glutamina y aminoácidos de cadena ramificada en los parámetros hematológicos y bioquímicos de cachorros caninos

Autores

  • R. P. Mena Universidad Central del Ecuador. Facultad de Medicina Veterinaria y Zootecnia Universidad Nacional Agraria La Molina. Facultad de Zootecnia. Escuela de Posgrado
  • T. I. Llumiquinga Universidad Central del Ecuador. Facultad de Medicina Veterinaria y Zootecnia
  • J. R. Quisirumbay Universidad Central del Ecuador. Facultad de Medicina Veterinaria y Zootecnia
  • M. E. Villanueva Universidad Nacional Agraria La Molina. Facultad de Zootecnia. Escuela de Posgrado

DOI:

https://doi.org/10.30972/vet.3326178

Palavras-chave:

Cachorros, Células sanguíneas, Aminoácidos, Suplementación, Hematología

Resumo

El objetivo del estudio fue determinar la influencia de glutamina (GLN) y BCAAs (leucina, isoleucina y valina) sobre los parámetros hematológicos y bioquímicos de los cachorros. Se reclutaron 31 cachorros mestizos de 30 días, provenientes de cuatro camadas. Aleatoriamente en cada camada se estableció un grupo control (sin suplemento) y 3 tratamientos: T1 (GLN 0,5 g/kg/día/PO), T2 (BCAAs, 0.25 g/kg/día/PO) y T3 (GLN 0,5 g/kg+BCAAs 0,25 g/kg/día/PO), que se mantuvieron 90 días en ambiente controlado en igualdad de condiciones, alimentados dos veces al día individualmente, las muestras se tomaron a los 30 y 120 días de edad. Se aplicó un diseño en bloques al azar empleando a la camada como factor de bloque, se realizaron estadísticas descriptivas y pruebas de normalidad, además ANOVA para verificar variaciones entre tratamientos y Tukey para posicionar los tratamientos. A los 30 días las medias y rangos de los parámetros hematológicos y bioquímicos fueron similares. A los 120 días en los parámetros hematológicos se determinaron diferencias (p<0.05) en función del bloque, no así del tratamiento (p>0.05), sin embargo, el promedio de leucocitos (10.33 10*9/L) y el promedio de neutrófilos (7.17 10*9/L) del T2 fueron superiores al promedio del grupo control y de los otros tratamientos mostrando diferencia significativa (p<0.05) solo a un IC del 90%. Los parámetros de la bioquímica sanguínea no mostraron diferencias (p>0.05). En conclusión, se evidenció un efecto positivo en la inmunidad innata, resultando favorable la suplementación con BCAAs, sin evidencia de toxicidad.

Downloads

Não há dados estatísticos.

Referências

Baker DH et al. 2005. Tolerance for branchedchain amino acids in experimental animals and humans. J Nutr 135: 6, 1585-1590. https://doi.org/10.1093/jn/135.6.1585s

Brenten T et al. 2016. Age-associated and breed-associated variations in haematological and biochemical variables in young Labrador retriever and miniature Schnauzer dogs. Vet Rec Open 3: 1, 1-9.

Brosnan JT, Brosnan ME. 2006. Branched-chain amino acids: metabolism, physiological function and application branched-chain Enzym & Substr Regul 1-3 (3), 207-211.

Burrin DG, Stoll B. 2009. Metabolic fate and function of dietary glutamate in the gut. Am J Clin Nutr 90: 3, 850-856. https://doi.org/10.3945/ajcn.2009.27462Y.

Castro TX et al. 2013. Clinical, hematological, and biochemical findings in puppies with coronavirus and parvovirus enteritis. Can Vet J 54: 9, 885-888.

Costa TB et al. 2016. Neonatal malnutrition programs the oxidant function of macrophages in response to Candida albicans. Microb Pathog 95: 68-76.

Coster J, McCauley R, Hall J. 2004. Glutamine: metabolism and application in nutrition support. J Clin Nutr 13: 1, 25-31.

DeCaprariis D et al. 2011. Evolution of clinical, haematological and biochemical findings in young dogs naturally infected by vector-borne pathogens. Vet Microbiol 149: 1-2, 206-212.

DeLaTorre Det al. 2018. Molecular characterization of canine parvovirus variants (CPV-2a, CPV-2b, and CPV-2c) based on the VP2 gene in affected

domestic dogs in Ecuador. Vet World 11: 4, 480-487. https://doi.org/10.14202/vetworld.

Duijvestijn M et al. 2016. Entero pathogen infections in canine puppies: co-occurrence, clinical relevance and risk factors. Vet Microbiol

: 115-122.

Federación Europea de fabricantes de alimentos para animales de compañía. 2017. Guías nutricionales para alimentos completos y complementarios para perros y gatos. https://www.um.es/documents/Guias-NutricionalesFEDIAF pdf 410142b0.

Freund HR. 1985. Effect of branched-chain amino acids and insulin on post injury protein catabolism in growing animals. J Parenter Enter Nutr 9: 1, 71.

Gizzi A et al. 2014. Presence of infectious agents and co-infections in diarrheic dogs determined with a real-time polymerase chain reactionbased panel. BMC Vet Res 10: 1, 23. https://doi.org/10.1186/1746-6148-10-23

Greco DS. 2014. Pediatric nutrition. Vet Clin North Am Small Anim Pract 44: 2, 265-273. https://doi.org/10.1016/j.cvsm.2013.11.001.

Grundy SA. 2006. Clinically relevant physiology of the neonate. Veterinary Clinics of North America Small Animal Practice 36: 3, 443-459.

Harper EJ, Hackett RM, Wilkinson J, Heaton PR. 2003. Age-related variations in hematologic and plasma biochemical test results in Beagles and Labrador Retrievers. J Am Vet Med Assoc 223: 10, 1436-1442.

Huillier L et al. 2020. Influence of glutamine and branched-chain amino acids supplementation during. Refeed Activity Anorectic Mice Nutrients 1-14. https://doi.org/10.3390/nu12 12113510.

Humbert B et al. 2002. Does enteral glutamine modulate whole-body leucine kinetics in hypercatabolic dogs in a fed state? Metabolism 51: 5, 628-635.

Kanakubo K, Fascetti AJ, Larsen JA. 2015. Assessment of protein and amino acid concentrations and labeling adequacy of commercial vegetarian diets formulated for dogs and cats. J Am Vet Med Assoc 247: 4, 385-392.

Kang JH, Kim SS, Yang MP. 2012. Effect of parenteral L-alanyl-L-glutamine administration on phagocytic responses of polymorphonuclear

neutrophilic leukocytes in dogs undergoing high-dose methyl prednisolone sodium succinate treatment. Am J Vet Res 73: 9, 1410-1417.

Kimura T, Kotani K. 2018. Perinatal veterinary medicine-related evaluation in hematological and serum biochemical profiles of experimental beagles throughout pregnancy and parturition. Anim Model Exp Med 1: 4, 282-294.

Lee SH, Kim JW, Lee BC, Oh HJ. 2020. Age-specific variations in hematological and biochemical parameters in middle and large-sized

of dogs. J Vet Sci 21: 1, 1-13. https://doi.org/10.4142/jvs.2020.21.e7

Mao X et al. 2018. L-isoleucine administration alleviates rotavirus infection and immune response in the weaned piglet model. Front Immunol 9: 1-12.

Marante J et al. 2005. Usos de la glutamina en pediatría, Med. UNAB 8: 1, 37-42.

Michaell N, Danielle M, Zoltan A. 2016. Branched chain aminoacides. Physiol Behav 176: 1, 139-148. https://doi.org/10.1146/annurevphysiol-020518.

Mila H et al. 2014. Inadequate passive immune transfer in puppies: definition, risk factors and prevention in a large multi-breed kennel. Prev Vet Med 116: 1-2, 209.

Mila H et al. 2017. Monitoring of the newborn dog and prediction of neonatal mortality. Prev Vet Med 143: 11-20.

Mugnier A et al. 2019. Birth weight as a risk factor for neonatal mortality: breed-specific approach to identify at-risk puppies. Prev Vet Med 171: 104746. https://doi.org/10.1016.

Mundi MS, Shah M, Hurt RT. 2016. When is it appropriate to use glutamine in critical illness? Nutr Clin Pract 31: 4, 445-450. https://doi.org/10.1177/08845336.

Nie C, He T, Zhang W, Zhang G, Ma X. 2018. Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci 19: 4. https://doi.org/10.3390/ijms.

O’Brien MA, McMichael MA, Boedec K, Lees G. 2014. Reference intervals and age-related changes for venous biochemical, hematological, electrolytic, and blood gas variables using a point of care analyzer in 68 puppies. J Vet Emerg Crit Care 24: 3, 291-301.

Rørtveit R et al. 2015. Age-related changes in hematologic and serum biochemical variables in dogs aged 16-60 days. Vet Clin Pathol 44: 1, 47-57.

Shimomura Y, Kitaura Y. 2018. Physiological and pathological roles of branched-chain amino acids in the regulation of protein and energy metabolism and neurological functions. Pharmacol Res 133: 215-217.

Von Dehn B. 2014. Pediatric clinical pathology. Vet Clin North Am Small Anim Pract 44: 2, 205-219. https://doi.org/10.1016/j.cvsm.2013.10.003

Zhang ZY, Monleon D, Verhamme P, Staessen JA. 2018. Branched-chain amino acids as critical switches in health and disease. Hypertension 72: 5, 1012-1022.

Zhou H, Yu B, Gao J, Htoo JK, Chen D. 2018. Regulation of intestinal health by branched-chain amino acids. Anim Sci J 89: 1, 3-11.

Zhou QQ et al. 2019. Randomised placebocontrolled trial of dietary glutamine supplements for post-infectious irritable bowel syndrome. Gu. 68: 6, 996-1002. https://doi.org/10.1136/gutjnl-2017-315136.

Publicado

2022-12-26

Como Citar

Mena, R. P., Llumiquinga, T. I., Quisirumbay, J. R., & Villanueva, M. E. (2022). Efecto de la glutamina y aminoácidos de cadena ramificada en los parámetros hematológicos y bioquímicos de cachorros caninos. Revista Veterinaria, 33(2), 169–176. https://doi.org/10.30972/vet.3326178

Edição

Seção

Trabajos de Investigación

Artigos mais lidos pelo mesmo(s) autor(es)