Revisión de la patogénesis molecular del aborto por Brucella

Autores

DOI:

https://doi.org/10.30972/vet.3527875

Palavras-chave:

Trofoblastos, Citoquinas, Hormonas, Vacunas, Modelos de infección

Resumo

La brucelosis es una enfermedad infecciosa crónica, zoonótica, de amplia distribución mundial causada por bacterias del género Brucella spp. En las especies animales susceptibles, el principal y muchas veces único signo clínico es el aborto. El aborto, además de producir pérdidas económicas en las explotaciones pecuarias, es el elemento más importante para que la enfermedad se disemine y perpetúe, generando también problemas en la salud pública. Sin embargo, es muy poco lo que se conoce acerca de los mecanismos moleculares que lo ocasionan. Brucella spp. muestra un especial tropismo por el útero gestante en el último tercio de la preñez, donde sobrevive y se reproduce en el interior de los trofoblastos. El alto número de bacterias dentro de los trofoblastos desencadena la apoptosis de las células infectadas por estrés del retículo endoplásmico. La destrucción masiva de trofoblastos resulta en una placentitis fibrino-necrótica, que dificulta el intercambio nutricional y gaseoso entre la madre y el feto, y la interrupción de la gestación se produce cuando los placentomas sobrevivientes no son suficientes para mantener activa la gestación. La interacción de Brucella con los trofoblastos no se ha estudiado en detalle, y muchos eventos de esa interacción, se infieren a partir de las observaciones en otros tipos celulares. En este artículo se describen los factores de virulencia de Brucella que intervienen en la adherencia, invasión y replicación intratrofoblástica de la bacteria, y las consecuencias locales que desencadena, y se discute la acción preventiva de la vacunación sobre el aborto. Finalmente se muestran varios modelos de estudio in vitro o ex vivo disponibles que no han sido explotados y que podrían brindar mayores datos sobre la patogenia molecular del aborto por Brucella.

Downloads

Não há dados estatísticos.

Referências

About F, Pastre T, Boutrou M, Martinez AY, Melzani A, Peugny S, Michaud C, Zouaoui S, Carage T, Rose V, Sainte Demar M, Lavigne J-P, Djossou F, O’Callaghan D, Epelboin L, Keriel A. Novel Species of Brucella Causing Human Brucellosis, French Guiana. Emerg. Infect. Dis. 2023; 29: 333–340.

Adams LG. The pathology of brucellosis reflects the outcome of the battle between the host genome and the Brucella genome. Vet. Microbiol. 2002; 90: 553–561.

Alexander B, Schnurrenberger PR, Brown RR. Numbers of Brucella abortus in the placenta, umbilicus and fetal fluid of two naturally infected cows. Vet. Rec. 1981; 108: 500.

Anderson TD, Cheville NF, Meador VP. Pathogenesis of placentitis in the goat inoculated with Brucella abortus. II. Ultrastructural studies. Vet. Pathol. 1986; 23: 227–239.

Arriola Benitez PC, Rey Serantes D, Herrmann CK, Pesce Viglietti AI, Vanzulli S, Giambartolomei GH, Comerci DJ, Delpino MV. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect. Immun. 2016; 84: 598–606.

Balci M, Özdemir G. Differential Expression of EGFR-1, MMP-3, and MMP-9 in Spontaneous Abortions, Induced Abortions, and Tubal Pregnancies. Turk Patoloji Derg. 2019; 35: 1–8.

Barbeito CG, Galosi C, Monteavaro C, Portiansky E, Zanuzi C, Eory M, Fuentealba N, Gimeno E. Patologia placentaria: conocimientos generados por estudios experimentales. Ann. Acad. Nac. Agron. Vet. 2010; 64: 87–117.

Bialer MG, Ferrero MC, Delpino MV, Ruiz-Ranwez V, Posadas DM, Baldi PC, Zorreguieta A. Adhesive Functions or Pseudogenization of Type Va Autotransporters in Brucella Species. Front. Cell. Infect. Microbiol. 2021; 11: 607610.

Blasco J. Brucella ovis, in: Nielsen, K., Duncan JR (Eds.), Animal Brucellosis. CRC Press, Boca Raton, Florida, 1990; pp. 351–378.

Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM. Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. MBio 2019; 10.

Carmichael LE, Kenney RM. Canine abortion caused by Brucella canis. J. Am. Vet. Med. Assoc. 1968; 152: 605–616.

Carvalho Neta AV, Stynen APR, Paixão TA, Miranda KL, Silva FL, Roux CM, Tsolis RM, Everts RE, Lewin HA, Adams LG, Carvalho AF, Lage AP, Santos RL. Modulation of the bovine trophoblastic innate immune response by Brucella abortus. Infect. Immun. 2008; 76: 1897–1907.

Carvalho Neta A V, Mol JPS, Xavier MN, Paixão TA, Lage AP, Santos RL. Pathogenesis of bovine brucellosis. Vet. J. 2010; 184: 146–155.

Castañeda-Roldán EI, Avelino-Flores F, Dall’Agnol M, Freer E, Cedillo L, Dornand J, Girón JA. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell. Microbiol. 2004; 6: 435–445.

Castañeda-Roldán EI, Ouahrani-Bettache S, Saldaña Z, Avelino F, Rendón MA, Dornand J, Girón JA. Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell. Microbiol. 2006; 8: 1877–1887.

Castaño-Zubieta MR, Rossetti CA, Maurizio E, Hensel ME, Arenas-Gamboa ÁM. Evaluation of the safety profile of the vaccine candidate Brucella melitensis 16MΔvjbR strain in goats. Vaccine 2021; 39: 617–625.

Celli J. The Intracellular Life Cycle of Brucella spp. Microbiol. Spectr. 2019; 7.

Chaouat G, Zourbas S, Ostojic S, Lappree-Delage G, Dubanchet S, Ledee N, Marta J. A brief review of recent data on some cytokine expressions at the materno-foetal interface which might challenge the classical Th1/Th2 dichotomy. J. Reprod. Immunol. 2002; 53: 241–256.

Crawford RP, Adams LG, Williams JD. Relationship of fetal age at conjunctival exposure of pregnant heifers and Brucella abortus isolation. Am. J. Vet. Res. 1987; 48: 755–757.

Czibener C, Merwaiss F, Guaimas F, Del Giudice MG, Serantes DA, Spera JM, Ugalde JE. BigA is a novel adhesin of Brucella that mediates adhesion to epithelial cells. Cell. Microbiol. 2016; 18: 500–513.

de Oliveira MM, Pereira CR, de Oliveira IR, Godfroid J, Lage AP, Dorneles EMS. Efficacy of Brucella abortus S19 and RB51 vaccine strains: A systematic review and meta-analysis. Transbound. Emerg. Dis. 2022; 69: e32–e51.

del C Rocha-Gracia R, Castañeda-Roldán EI, Giono-Cerezo S, Girón JA. Brucella sp. bind to sialic acid residues on human and animal red blood cells. FEMS Microbiol. Lett. 2002; 213: 219–224.

Dorneles EMS, Lima GK, Teixeira-Carvalho A, Araujo MSS, Martins-Filho OA, Sriranganathan N, Al Qublan H, Heinemann MB, Lage AP. Immune Response of Calves Vaccinated with Brucella abortus S19 or RB51 and Revaccinated with RB51. PLoS One 2015a;10: e0136696.

Dorneles EMS, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet. Res. 2015b; 46: 76.

Elzer PH, Hagius SD, Davis DS, DelVecchio VG, Enright FM. Characterization of the caprine model for ruminant brucellosis. Vet. Microbiol. 2002; 90: 425–431.

Enright F. The pathogenesis and pathobiology of Brucella infection in domestic animals, in: Nielsen, K., Duncan (Eds.), Animal Brucellosis. CRC. CRC Press, Inc, Boca Raton, Florida, USA, 1990; pp. 301–320.

Fensterbank R, Verger JM, Grayon M. Conjunctival vaccination of young goats with Brucella melitensis strain Rev 1. Ann. Rech. Vet. 1987; 18: 397–403.

Fernández AG, Ferrero MC, Hielpos MS, Fossati CA, Baldi PC. Proinflammatory Response of Human Trophoblastic Cells to Brucella abortus Infection and upon Interactions with Infected Phagocytes. Biol. Reprod. 2016; 94: 48.

Fernández AG, Hielpos MS, Ferrero MC, Fossati CA, Baldi PC. Proinflammatory response of canine trophoblasts to Brucella canis infection. PLoS One 2017; 12: e0186561.

Fluegel Dougherty AM, Cornish TE, O’Toole D, Boerger-Fields AM, Henderson OL, Mills KW. Abortion and premature birth in cattle following vaccination with Brucella abortus strain RB51. J. Vet. diagnostic Investig. 2013; 25: 630–635.

García-Méndez KB, Hielpos SM, Soler-Llorens PF, Arce-Gorvel V, Hale C, Gorvel J-P, O’Callaghan D, Keriel A. Infection by Brucella melitensis or Brucella papionis modifies essential physiological functions of human trophoblasts. Cell. Microbiol. 2019; 21: e13019.

Goenka R, Parent MA, Elzer PH, Baldwin CL. B cell-deficient mice display markedly enhanced resistance to the intracellular bacterium Brucella abortus. J. Infect. Dis. 2011; 203: 1136–1146.

Hall SM, Confer AW, Patterson JM. Brucella abortus-specific immunoglobulin in isotypes in serum and vaginal mucus from cattle vaccinated with strain 19 and challenge exposed with virulent strain 2308. Am. J. Vet. Res. 1988; 49: 840–846.

Hensel ME, Arenas-Gamboa AM. A Neglected Animal Model for a Neglected Disease: Guinea Pigs and the Search for an Improved Animal Model for Human Brucellosis. Front. Microbiol. 2018; 9: 2593.

Hensel ME, Chaki SP, Stranahan L, Gregory AE, van Schaik EJ, Garcia-Gonzalez DG, Khalaf O, Samuel JE, Arenas-Gamboa AM. Intratracheal Inoculation with Brucella melitensis in the Pregnant Guinea Pig Is an Improved Model for Reproductive Pathogenesis and Vaccine Studies. Infect. Immun. 2020a; 88.

Hensel ME, Garcia-Gonzalez DG, Chaki SP, Hartwig A, Gordy PW, Bowen R, Ficht TA, Arenas-Gamboa AM. Vaccine Candidate Brucella melitensis 16MΔvjbR Is Safe in a Pregnant Sheep Model and Confers Protection. mSphere 2020b; 5.

Hernández-Castro R, Verdugo-Rodríguez A, Puente JL, Suárez-Güemes F. The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells. Microb. Pathog. 2008; 44: 28–33.

Hernández-Mora G, Chacón-Díaz C, Moreira-Soto A, Barrantes-Granados O, Suárez-Esquivel M, Viquez-Ruiz E, Barquero-Calvo E, Ruiz-Villalobos N, Chaves-Olarte E, Lomonte B, Guzmán-Verri C, Drexler JF, Moreno E. Virulent Brucella nosferati infecting Desmodus rotundus has emerging potential due to the broad foraging range of its bat host for humans and wild and domestic animals. mSphere 8 2023; e0006123.

Hielpos MS, Ferrero MC, Fernández AG, Falivene J, Vanzulli S, Comerci DJ, Baldi PC. Btp Proteins from Brucella abortus modulate the lung innate immune response to infection by the respiratory route. Front. Immunol. 2017; 8.

Igwebuike UM. Trophoblast cells of ruminant placentas--A minireview. Anim. Reprod. Sci. 2006; 93: 185–198.

Inan A, Erdem H, Elaldi N, Gulsun S, Karahocagil MK, Pekok AU, Ulug M, Tekin R, Bosilkovski M, Ayaslioglu E, Bilgic-Atli S, Erbay A, Ergen, P, Kadanali A, Sahin S, Sahin-Horasan E, Avci A, Cag Y, Beeching NJ. Brucellosis in pregnancy: results of multicenter ID-IRI study. Eur. J. Clin. Microbiol. Infect. Dis. 2019; 38: 1261–1268.

Jaÿ M, Freddi L, Mick V, Durand B, Girault G, Perrot L, Taunay B, Vuilmet T, Azam D, Ponsart C, Zanella G. Brucella microti-like prevalence in French farms producing frogs. Transbound. Emerg. Dis. 2020; 67: 617–625.

Jiménez-Pelayo L, García-Sánchez M, Regidor-Cerrillo J, Horcajo P, Collantes-Fernández E, Gómez-Bautista M, Hambruch N, Pfarrer C, Ortega-Mora LM. Immune response profile of caruncular and trophoblast cell lines infected by high- (Nc-Spain7) and low-virulence (Nc-Spain1H) isolates of Neospora caninum. Parasit. Vectors. 2019; 12: 218.

Jimenez de Bagues MP, Marin CM, Barberan M, Blasco JM. Responses of ewes to B. melitensis Rev1 vaccine administered by subcutaneous or conjunctival routes at different stages of pregnancy. Ann. Rech. Vet. 1989; 20: 205–213.

Keestra-Gounder AM, Byndloss, MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, Cevallos SA, Winter MG, Pham, OH, McSorley SJ, Bäumler AJ, Tsolis RM. NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 2016; 532: 394–397.

Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M. Interferon-gamma promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol. 2005; 5: 22.

Ledwaba MB, Glover BA, Matle I, Profiti G, Martelli PL, Casadio R, Zilli K, Janowicz A, Marotta F, Garofolo G, van Heerden H. Whole Genome Sequence Analysis of Brucella abortus Isolates from Various Regions of South Africa. Microorganisms 2021; 9.

Letesson J-J, Barbier T, Zúñiga-Ripa A, Godfroid J, De Bolle X, Moriyón I. Brucella Genital Tropism: What’s on the Menu. Front. Microbiol. 2017; 8: 506.

Liu X, Zhou M, Wu J, Wang J, Peng Q. HMGB1 release from trophoblasts contributes to inflammation during Brucella melitensis infection. Cell. Microbiol. 2019; 21: e13080.

Lopez P, Guaimas F, Czibener C, Ugalde JE. A genomic island in Brucella involved in the adhesion to host cells: Identification of a new adhesin and a translocation factor. Cell. Microbiol. 2020; 22: e13245.

Marchesini MI, Morrone Seijo SM, Guaimas FF, Comerci DJ. A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle. Front. Cell. Infect. Microbiol. 2016; 6: 153.

Martirosyan A, Moreno E, Gorvel J-P. An evolutionary strategy for a stealthy intracellular Brucella pathogen. Immunol. Rev. 2011; 240: 211–234.

Meglia GE, Castillo M, Gomez MB, Tortone C, Cerutti DA, Gastaldo MF, Ardoino S, Palermo P, Belaustegui F, Elena S, Bonastre P, Fabeiro M, Franco C, Bagnat E. La protección contra el aborto por la primo-vacunación antibrucelica caprina, ante el desafío de la revacunación. InVet 2023; 25: 1-11.

Mol JPS, Costa EA, Carvalho AF, Sun Y-H, Tsolis RM, Paixão TA, Santos RL. Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection. PLoS One 2014; 9: e108606.

Mol JPS, Pires SF, Chapeaurouge AD, Perales J, Santos RL, Andrade HM, Lage AP. Proteomic Profile of Brucella abortus-Infected Bovine Chorioallantoic Membrane Explants. PLoS One 2016; 11: e0154209.

Montaraz JA, Winter AJ, Hunter DM, Sowa BA, Wu AM, Adams LG. Protection against Brucella abortus in mice with O-polysaccharide-specific monoclonal antibodies. Infect. Immun. 1986; 51: 961–963.

Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H. Brucella abortus 16S rRNA and lipid A reveal a phylogenetic relationship with members of the alpha-2 subdivision of the class Proteobacteria. J. Bacteriol. 1990; 172: 3569–3576.

Olsen SC, Johnson C. Comparison of abortion and infection after experimental challenge of pregnant bison and cattle with Brucella abortus strain 2308. Clin. Vaccine Immunol. 2011; 18: 2075–2078.

Palmer M V, Elsasser TH, Cheville NF. Tumor necrosis factor-alpha in pregnant cattle after intravenous or subcutaneous vaccination with Brucella abortus strain RB51. Am. J. Vet. Res. 1998; 59: 153–156.

Pastor-Fernández I, Collantes-Fernández E, Jiménez-Pelayo L, Ortega-Mora LM, Horcajo P. Modeling the Ruminant Placenta-Pathogen Interactions in Apicomplexan Parasites: Current and Future Perspectives. Front. Vet. Sci. 2020; 7: 634458.

Petersen E, Rajashekara G, Sanakkayala N, Eskra L, Harms J, Splitter G. Erythritol triggers expression of virulence traits in Brucella melitensis. Microbes Infect. 2013; 15: 440–449.

Posadas DM, Ruiz-Ranwez V, Bonomi HR, Martín FA, Zorreguieta A. BmaC, a novel autotransporter of Brucella suis, is involved in bacterial adhesion to host cells. Cell. Microbiol. 2012; 14: 965–982.

Ren J, Hou H, Zhao W, Wang J, Peng Q. Administration of Exogenous Progesterone Protects Against Brucella abortus Infection-Induced Inflammation in Pregnant Mice. J. Infect. Dis. 2021; 224: 532–543.

Robinson DP, Klein SL. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 2012; 62: 263–271.

Rodríguez MC, Viadas C, Seoane A, Sangari FJ, López-Goñi I, García-Lobo JM. Evaluation of the effects of erythritol on gene expression in Brucella abortus. PLoS One 2012; 7: e50876.

Roop RM 2nd, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol. Mol. Biol. Rev. 2021; 85.

Roop RM 2nd, Bellaire BH, Valderas MW, Cardelli JA. Adaptation of the Brucellae to their intracellular niche. Mol. Microbiol. 2004; 52: 621–630.

Rossetti CA, Drake KL, Adams LG. Transcriptome analysis of HeLa cells response to Brucella melitensis infection: A molecular approach to understand the role of the mucosal epithelium in the onset of the Brucella pathogenesis. Microbes Infect. 2012; 14.

Rossetti CA, Maurizio E, Rossi UA. Comparative Review of Brucellosis in Small Domestic Ruminants. Front. Vet. Sci. 2022; 9: 887671.

Ruiz-Ranwez V, Posadas DM, Estein SM, Abdian PL, Martin FA, Zorreguieta A. The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence. PLoS One. 2013a; 8: e79770.

Ruiz-Ranwez V, Posadas DM, Van der Henst C, Estein SM, Arocena GM, Abdian PL, Martín FA, Sieira R, De Bolle X, Zorreguieta A. BtaE, an adhesin that belongs to the trimeric autotransporter family, is required for full virulence and defines a specific adhesive pole of Brucella suis. Infect. Immun. 2013b; 81: 996–1007.

Salcedo SP, Chevrier N, Lacerda TLS, Ben Amara A, Gerart S, Gorvel VA, de Chastellier C, Blasco JM, Mege J-L, Gorvel J-P. Pathogenic brucellae replicate in human trophoblasts. J. Infect. Dis. 2013; 207: 1075–1083.

Samartino LE, Enright FM. Interaction of bovine chorioallantoic membrane explants with three strains of Brucella abortus. Am. J. Vet. Res. 1992; 53: 359–363.

Samartino LE, Enright FM. Pathogenesis of abortion of bovine brucellosis. Comp. Immunol. Microbiol. Infect. Dis. 1993; 16: 95–101.

Samartino LE, Enright FM. Brucella abortus differs in the multiplication within bovine chorioallantoic membrane explants from early and late gestation. Comp. Immunol. Microbiol. Infect. Dis. 1996; 19: 55–63.

Sidhu-Muñoz RS, Sancho P, Vizcaíno N. Evaluation of human trophoblasts and ovine testis cell lines for the study of the intracellular pathogen Brucella ovis. FEMS Microbiol. Lett. 2018; 365.

Silberstein E, Kim KS, Acosta D, Debrabant A. Human Placental Trophoblasts Are Resistant to Trypanosoma cruzi Infection in a 3D-Culture Model of the Maternal-Fetal Interface. Front. Microbiol. 2021; 12: 626370.

Skendros P, Boura P. Immunity to brucellosis. Rev. Sci. Tech. 2013; 32: 137–147.

Smith H, Williams AE, Pearce JH, Keppie J, Harris-Smith PW, Fitz-George RB, Witt K. Foetal erythritol: a cause of the localization of Brucella abortus in bovine contagious abortion. Nature. 1962; 193: 47–49.

Thuere C, Zenclussen ML, Schumacher A, Langwisch S, Schulte-Wrede U, Teles A, Paeschke S, Volk H-D, Zenclussen AC. Kinetics of regulatory T cells during murine pregnancy. Am. J. Reprod. Immunol. 2007; 58: 514–523.

Tsai AY, Byndloss MX, Seyffert N, Winter MG, Young BM, Tsolis RM. Tumor Necrosis Factor Alpha Contributes to Inflammatory Pathology in the Placenta during Brucella abortus Infection. Infect. Immun. 2022; 90: e0001322.

Vitry M-A, Hanot Mambres D, Deghelt M, Hack K, Machelart A, Lhomme F, Vanderwinden J-M, Vermeersch M, De Trez C, Pérez-Morga D, Letesson J-J, Muraille E. Brucella melitensis invades murine erythrocytes during infection. Infect. Immun. 2014; 82: 3927–3938.

von Schönfeldt V, Rogenhofer N, Ruf K, Thaler CJ, Jeschke U. Sera of patients with recurrent miscarriages containing anti-trophoblast antibodies (ATAB) reduce hCG and progesterone production in trophoblast cells in vitro. J. Reprod. Immunol. 2016; 117: 52–56.

Wang X, Lin P, Li Y, Xiang C, Yin Y, Chen Z, Du Y, Zhou D, Jin Y, Wang A. Brucella suis Vaccine Strain 2 Induces Endoplasmic Reticulum Stress that Affects Intracellular Replication in Goat Trophoblast Cells In vitro. Front. Cell. Infect. Microbiol. 2016; 6: 19.

Wang Z, Wang SS, Wang GL, Wu TL, Lv Y, Wu QM. A pregnant mouse model for the vertical transmission of Brucella melitensis. Vet. J. 2014; 200: 116–121.

Watanabe K, Tachibana M, Tanaka S, Furuoka H, Horiuchi M, Suzuki H, Watarai M. Heat shock cognate protein 70 contributes to Brucella invasion into trophoblast giant cells that cause infectious abortion. BMC Microbiol. 2008; 8: 212.

Wheelhouse N, Wattegedera S, Stanton J, Maley S, Watson D, Jepson C, Deane D, Buxton, D, Longbottom D, Baszler T, Entrican G. Ovine trophoblast is a primary source of TNFalpha during Chlamydophila abortus infection. J. Reprod. Immunol. 2009; 80: 49–56.

Xavier MN, Paixao TA, Poester EP, Lage AP, Santos RL. Pathological, immunohistochemical and bacteriological study of tissues and milk of cows and fetuses experimentally infected with Brucella abortus. J. Comp. Path. 2009; 140: 149-157.

Zhang H, Dou X, Li Z, Zhang Y, Zhang J, Guo F, Wang Y, Wang Z, Li T, Gu X, Chen C. Expression and regulation of the ery operon of Brucella melitensis in human trophoblast cells. Exp. Ther. Med. 2016; 12: 2723–2728.

Zhang J, Li M, Li Z, Shi J, Zhang Y, Deng X, Liu L, Wang Z, Qi Y, Zhang H. Deletion of the Type IV Secretion System Effector VceA Promotes Autophagy and Inhibits Apoptosis in Brucella-Infected Human Trophoblast Cells. Curr. Microbiol. 2019; 76: 510–519.

Zriba S, Garcia-Gonzalez DG, Khalaf OH, Wheeler L, Chaki SP, Rice-Ficht A, Ficht TA, Arenas-Gamboa AM. Vaccine safety studies of Brucella abortus S19 and S19DeltavjbR in pregnant swine. Vaccine X. 2019; 3: 100041.

Publicado

2024-11-01

Como Citar

Rossetti, C. (2024). Revisión de la patogénesis molecular del aborto por Brucella. Revista Veterinaria, 35(2), 114–125. https://doi.org/10.30972/vet.3527875

Edição

Seção

Artículo de revisión