Assessment for the Deployment of Small-Scale Urban Wind Energy Systems
DOI:
https://doi.org/10.30972/arq.269042Keywords:
Urban wind energy, Energy sustainability, Small-scale wind turbines, Urban integrationAbstract
This study analyzes the requirements for sitting low-power urban wind energy systems, emphasizing their aerodynamic performance and integration within the built environment. It evaluates conventional turbine designs and emerging technologies such as vortex-induced vibration harvesters and flow-concentrator devices, assessing their suitability for urban conditions. The methodology involves wind tunnel testing, numerical simulations, and in situ measurements to characterize wind behavior affected by turbulence, gusts, boundary-layer development, and urban morphology. Site-selection criteria include local wind resource levels, surface roughness, building geometry, and regulatory constraints. Results show that efficiency depends strongly on installation location, with significant gains in elevated positions and setups that exploit flow acceleration or channeling. Emerging technologies offer promising solutions to traditional challenges related to noise, structural vibrations, and maintenance.
References
Abdelkefi, A. (2016). Aeroelastic energy harvesting: A review. International Journal of Engineering Science, 100, 112–135.
Acosta Darrichón, E.J.A. & Usinger Kornschuh, F.A. (2023). Diversifying the Energy Matrix: Implementation of Vertical Axis Wind Turbines in Urban Areas in Argentina. Repositorio Institucional Abiero, UTN Facultad Regional Paraná, Argentina. Recuperado de https://ria.utn.edu.ar/items/df36d915-3c47-43bd-9826-aa3259172523
Aeromine Technologies (s.f.). Aeromine 5000 System. Recuperado de: https://aerominetechnologies.com/product
Al-Quraan, A., Stathopoulos, T., & Pillay, P. (2016). Comparison of wind tunnel and on-site measurements for urban wind energy estimation of potential yield. Journal of Wind Engineering and Industrial Aerodynamics, 158, 1–10.
Beller, C. (2011). Urban wind energy (PhD thesis). Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi.
Balduzzi, F., Bianchini, A., Carnevale, E. A., Ferrari, L., & Magnani, S. (2012). Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building. Applied Energy, 97, 921–929.
Boldes, U., Colman, J., & Morosi, J. (1987). Fluidodinámica ambiental. SUMMA, 238, 71–75.
Denissenko, P., & Tucker Harvey, S. (2025). An aeroelastic wind energy harvester with continuous orbiting motion and no friction components. Scientific Reports, 15, 34432.
Ding, Y. (2019). Data science for wind energy (1st ed.). Chapman and Hall/CRC Press.
Dilimulati, A., Stathopoulos, T., & Paraschivoiu, M. (2018). Wind turbine designs for urban applications: A case study of shrouded diffuser casing for turbines. Journal of Wind Engineering and Industrial Aerodynamics, 175, 179–192.
Fung, Y. C. (2002). An introduction to the theory of aeroelasticity. Dover Publications.
Global Wind Energy Council. (2024). Global Wind Report 2024 (Technical report).
International Renewable Energy Agency. (2021). Rise of renewables in cities: Energy solutions for the urban future (Technical report).
Mertens, S. (2006). Wind energy in the built environment: Concentrator effects of buildings (Doctoral thesis, Delft University of Technology). Multi-Science Publishing.
Micallef, D., & Van Bussel, G. (2018). A review of urban wind energy research: Aerodynamics and other challenges. Energies, 11(9), 2204.
Ordoñez, O., & Reyes Duke, A. (2021). Wind resource assessment: Analysis of the vortex bladeless characteristics in Puerto Cortés, Honduras. IOP Conference Series: Earth and Environmental Science, 801(1), 012019.
Park, J., Jung, H.-J., Lee, S.-W., & Park, J. (2015). A new building-integrated wind turbine system utilizing the building. Energies, 8, 11846–11870.
Toja-Silva, F., Colmenar-Santos, A., & Castro-Gil, M. (2013). Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges. Renewable and Sustainable Energy Reviews, 24, 364–378.
Ventum Dynamics (s.f.). Vx175 Wind Turbine. Recuperado de: https://ventumdynamics.com/
Wang, J., Geng, L., Ding, L., Zhu, H., & Yurchenko, D. (2020). The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267, 114902.
Yildiz, S. S. (2023). Determining wind energy potential using geographic information system functions: A case study in Balıkesir, Turkey. Applied Sciences, 13, 9183.
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Los autores ceden a Arquitecno los derechos de publicación de sus trabajos, toda vez que hayan sido admitidos como parte de alguno de sus números. Ellos, no obstante, retienen los derechos de propiedad intelectual y responsabilidad ética así como la posibilidad de dar difusión propia por los medios que consideren.




52.jpg)