Search for biological activity of proteolytic enzymes isolates from native and cultivated Bromeliaceae in Corrientes on phytopathogenic microorganisms

Authors

  • Melanie D. Gómez Herrera Instituto de Química Básica y Aplicada del Nordeste Argentino- IQUIBA NEA (UNNE-CONICET), Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5470, Corrientes https://orcid.org/0000-0002-6401-7579
  • Marina C. Cardozo Instituto de Química Básica y Aplicada del Nordeste Argentino- IQUIBA NEA (UNNE-CONICET), Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5470, Corrientes https://orcid.org/0000-0002-6401-7579
  • María C. Prieto Departamento de Agroalimentos, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina, Félix A. Marrone 746, Ciudad Universitaria, Córdoba https://orcid.org/0000-0003-3314-3107
  • María V. Avanza Instituto de Química Básica y Aplicada del Nordeste Argentino- IQUIBA NEA (UNNE-CONICET), Facultad de Ciencias Exactas Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5470, Corrientes https://orcid.org/0000-0002-5680-9744
  • Paula Alayón Luaces Cátedra de Fruticultura, Departamento de Producción Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Argentina, Sargento J. B. Cabral 2131, Corrientes https://orcid.org/0000-0002-5063-5923

DOI:

https://doi.org/10.30972/bon.3417883

Keywords:

Ananas comosus, Bromelia serra, natural control

Abstract

The aim of this work was to evaluate the biological activity of protein isolates from the native Bromelia serra (BS) and cultivated bromeliad Ananas comosus (AC) on phytopathogenic microorganisms. Samples of AC were obtained from the experimental station of the Universidad Nacional del Nordeste in Corrientes, Argentina and of BS from natural forests also in Corrientes, Argentina. Extracts of stem and leaves of AC and leaves of BS were processed through a precipitation with acetone, the pellet was re-suspended in autoclaved buffers and called protein isolates. The antimicrobial activity was evaluated by the disc diffusion technique, using phytopathogenic bacteria. However, an inhibition zone was not observed in any of the treatments with protein isolates, unlike the positive control with Streptomycin. The minimum inhibitory concentration of bacterial growth was determined by broth microdilution technique. The results showed that the protein isolates did not inhibit bacterial growth. Furthermore, antifungal activity against Fusarium oxysporum was evaluated by MTT method, but no significant inhibition was observed either. Although the protein extracts did not show biological activity against the microorganisms evaluated, future experiments will continue the evaluation by using other microorganisms. In addition, after a purification scheme will be established, different operational conditions and tests will be used with pure enzymes instead of their extracts.

Downloads

Download data is not yet available.

References

Abdulrahman Ali, A., Mohammed, A. M. & Isa, A. G. (2015). Antimicrobial effects of crude bromelain extracted from pineapple fruit (Ananas comosus (Linn.) Merr.). Advances in Biochemistry 3: 1-4. https://doi.org/10.11648/j.ab.20150301.11

Arshad, Z. I. M., Amid, A., Yusof, F., Jaswir, I., Ahmad, K. & Loke, S. P. (2014). Bromelain: an overview of industrial application and purification strategies. Applied Microbiology and Biotechnology 98: 7283-7297. https://doi. org/10.1007/s00253-014-5889-y

Ávalos-Flores, E., López-Castillo, L. M., Wielsch, N., Hupfer, Y., Winkler, R. & Magaña-Ortiz, D. (2022). Protein extract of Bromelia karatas L. rich in cysteine proteases (ananain-and bromelainlike) has antibacterial activity against foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium. Folia Microbiologica 67: 1-13. https:// doi.org/10.1007/s12223-021-00906-9

Caffini, N. O., Natalucci, C. L., Priolo, N. S., & Buttazzoni, M. S. (1988). Proteasas de Bromeliaceae. IV. Aislamiento de una fitoproteasasulfhidrílica presente en frutos de Bromelia serra Griseb. Acta Farmacéutica Bonaerense 7: 9-14.

Culebras, J. M. & Franco-López, Á. (2016). Negativo es positivo. Medicina y Seguridad del Trabajo 62: 290-292. De Pooter, H. L., Aboutabl, E. A. & El‐Shabrawy, A. O. (1995). Chemical composition and antimicrobial activity of essential oil of leaf, stem and rhizome of Alpinia speciosa. Flavour and Fragrance Journal 10: 63-67. https://doi.org/10.1002/ffj.2730100202

Demo, M., Oliva, M. D. L. M., López, M. L., Zunino, M. P. & Zygadlo, J. A. (2005). Antimicrobial activity of essential oils obtained from aromatic plants of Argentina. Pharmaceutical biology 43(2): 129-134. https://doi.org/10.1080/13880200590919438

Dickert, H., Machka, K. & Braveny, I. (1981). The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria. Infection 9: 18-24. https://doi:10.1007/bf01640803

Dutta, S. & Bhattacharyya, D. (2013). Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. Journal of Ethnopharmacology 150: 451-457. https://doi.org/10.1016/j.jep.2013.08.024

Ghannoum, M. A. & Rice L. B. (1999). Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clinical Microbiology Reviews 12: 501- 17. https://doi.org/10.1128/CMR.12.4.501

Gómez Herrera, M. D., Luaces, P. A., Liggieri, C., Bruno, M. & Avanza, M. V. (2022). Proteolytic characterization of a novel enzymatic extract from Bromelia serra leaves.Anais da Academia Brasileira de Ciências 94:1-15. https://doi.org/10.1590/0001- 3765202220201871

Hassan, O. & Chang, T. (2017) Chitosan for ecofriendly control of plant disease. Asian Journal of Plant Pathology 11: 53-70. Hood, J. R., Wilkinson, J. M. & Cavanagh, H. M. A. (2003). Evaluation of common antibacterial screening methods utilized in essential oil research. Journal of Essential Oil Research 15: 428-433. https://doi.org/10.1080/10412905.2003. 9698631

Husain, Q. (2018). Nanocarriers immobilized proteases and their industrial applications: an overview.Journal of Nanoscience and Nanotechnology 18: 486-499. https://doi.org/10.1166/jnn.2018.15246

Jung, Y. J., Choi, C. S., Park, J. H., Kang, H. W., Choi, J. E., Nou, I. S., Lee, S. Y. & Kang, K. K. (2008). Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electronic Journal of Biotechnology 11: 71-79. http://dx.doi.org/10.4067/ S0717-34582008000100007

Kuhn, D. M., Balkis, M., Chandra, J., Mukherjee, P. K. & Ghannoum, M. A. (2003). Uses and limitations of the XTT assay in studies of Candida growth and metabolism. Journal of Clinical Microbiology 41: 506-508. https://doi.org/10.1128/jcm.41.1.506- 508.2003

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.https://doi. org/10.1038/227680a0

Lambir, A. J., Carezzano, M. E., Quiroga, P. R. & Grosso, N. R. (2022). Fracciones de aceite esencial de laurel obtenidas por destilación molecular con mayor actividad antioxidante y antimicrobiana. AgriScientia 39: 105-116. https:// doi.org/10.31047/1668.298x.v39.n1.35407

López‐García, B., Hernández, M. & Segundo, B. S. (2012). Bromelain, a cysteine protease from pineapple (Ananas comosus) stem, is an inhibitor of fungal plant pathogens. Letters in Applied Microbiology 55: 62-67. https://doi.org/10.1111/ j.1472-765X.2012.03258.x

Manzoor, Z., Nawaz, A., Mukhtar, H. & Haq, I. (2016). Bromelain: Methods of extraction, purification and therapeutic applications. Brazilian Archives of Biology and Technology 59: 1-16. https://doi. org/10.1590/1678-4324-2016150010

Mazorra-Manzano, M. A., Ramírez-Suarez, J. C. & Yada, R. Y. (2018). Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition 58: 2147-2163.https://doi.org/ 10.1080/10408398.2017.1308312

Meena, R. K. & Mishra, P. (2020). Bio-pesticides for agriculture and environment sustainability. En Kumar, S., Meena, R.s. & Jhariya, M.k. (eds.), Resources use efficiency in agriculture, pp. 85-107.Springer Press, Singapur. https://doi. org/10.1007/978-981-15-6953-1_3

Meletiadis, J., Meis, J. F., Mouton, J. W., Donnelly, J. P. &Verweij, P. E. (2000). Comparison of NCCLS and 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2Htetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method. Journal of Clinical Microbiology 38: 2949-2954. https://doi.org/10.1128/jcm.38.8.2949-2954.2000

Pinheiroa, A. C., Bourbona, A. I., Cerqueiraa, M. A., Maricato, E., Nunes, C., Coimbra, M. A. & Vicentea, A. A. (2015). Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. CarbohydrPolym 115: 1-9. https://doi.org/10.1016/j.carbpol.2014.07.016

Präbst, K., Engelhardt, H., Ringgeler, S., Hübner, H. (2017). Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin. En Gilbert, D. & O. Friedrich (eds.) Cell viability Assays. Methods in Molecular Biology, vol. 1601. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6960-9_1

Prieto, M. C., Lapaz, M. I., Lucini, E. I., Pianzzola, M. J., Grosso, N. R., Asensio, C. M. (2020). Thyme and suico essential oils: promising natural tools for potato common scab control. Plant Biology 22: 81-89.

Salese, L., Liggieri, C. S., Bernik, D. L. & Bruno, M. A. (2022). Characterization of the fruit proteolytic system of Bromelia serra Griseb. (Bromeliaceae) and its application in bioactive peptides release. Journal of Food Biochemistry 46: e14016. https://doi.org/10.1111/jfbc.14016

Sarath, G., De La Motte, R. & Wagner, F. 1989. Protease assay methods. En Beynon R. & J. Bond (eds.), Proteolytic enzymes: a practical approach, pp. 25-55. IRL Press, Oxford.

Tochi, B. N., Wang, Z., Xu, S. Y. & Zhang, W. (2008). Therapeutic application of pineapple protease (bromelain): a review. Pakistan Journal of Nutrition 7: 513-520. https://doi.org/10.3923/pjn.2008.513.520

Xu, X. M., Jeffries, P., Pautasso, M. & Jeger, M. J. (2011). Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101: 1024-1031. https://doi. org/10.1094/PHYTO-08-10-0216

Downloads

Published

2024-10-30 — Updated on 2024-12-17

Versions

How to Cite

Gómez Herrera, M. D., Cardozo, M. C., Prieto, M. C., Avanza, M. V., & Alayón Luaces, P. (2024). Search for biological activity of proteolytic enzymes isolates from native and cultivated Bromeliaceae in Corrientes on phytopathogenic microorganisms. Bonplandia, 34(1). https://doi.org/10.30972/bon.3417883 (Original work published October 30, 2024)

Issue

Section

Original papers