etection of Leishmania in medullary tissue of bats and rodents that inhabit an endemic area for canine leishmaniasis in Corrientes, Argentina

Authors

  • R. M. Ruiz Universidad Nacional del Nordeste. Facultad de Ciencias Veterinarias. Cátedra Salud Pública.
  • E. A. Alegre Universidad Nacional del Nordeste. Facultad de Ciencias Veterinarias. Cátedra Salud Pública.
  • G. V. Ramirez Universidad Nacional del Nordeste. Facultad de Ciencias Veterinarias. Cátedra Salud Pública.

DOI:

https://doi.org/10.30972/vet.3215630

Keywords:

bats, rats, Leishmania sp, bone marrow, PCR

Abstract

The problem of leishmaniasis in America lies in its complex and varied epidemiological aspects of presentation. Although in the City of Corrientes, domestic canines represent the main urban reservoir, the participation of other mammals in the urban transmission cycle is not known, however, it has already been proposed for other animal species in different urban areas worldwide. Based on previous work and knowledge about the high population of rodents and bats know the possible participation of these animal species in the epidemiological chain, detecting whether there is an active natural infection, its prevalence and identification of circulating species, applying detection techniques by molecular biology. Bone marrow samples were used, as it is a tissue with the main distribution pattern of visceral Leishmania. Captures of both animal species were made
in coincidence with areas of the city of Corrientes identified with high prevalence for canine 
leishmaniasis. From 90 captures, 82 samples were obtained (50 bats and 32 rodents) which were subjected to a generic Nested PCR for Leishmania sp, and those that were detectable, were subjected to two specific simple PCRs to identify Leihmania (V) braziliensis and L. (L) chagasi species. As a result, a high prevalence of 21.8% was obtained in rodent samples with the probability of playing the role of reservoirs, while for bats, although natural infection was detected, the prevalence found of 10% was not sufficient to consider this species as a possible reservoir, but possible putative hosts in special eco-epidemiological situations or disseminators of parasitosis.

Downloads

Download data is not yet available.

References

Bárquez, RM, Díaz MM. 2020. Nueva Guía de Murciélagos de Argentina, publicación especial N°3 PCMA, Tucumán, Argentina, 186 p.

Barral A et al. 1986. Isolation of Leishmania Mexicana

Amazonensis from the bone marrow in a case of american visceral leishmaniasis. The Am J Trop Med and Hygien 35: 732-734.

Berzunza CM et al. 2015. Leishmania mexicana infected bats in Mexico: Novel potential reservoirs. PLoSNegl Trop Dis 9: 1-15.

Bodini ME et al. 2007. An investigation of Leishmania sp in Didelphis sp from urban and peri-urban areas in Bauru (São Paulo, Brazil). Vet Parasit 150: 4, 283-290.

Costa DN, Codeço CT, Silva MA, Werneck GL. 2013. El sacrificio de perros en escenarios de control imperfecto: impacto realista en la prevalencia de la leishmaniasis visceral canina. PLoS Negl Trop Dis 7: 8, e2355.

Dacosta MS et al. 2009. Identification of Leishmania sp isolated in human cases in Mato Grosso do Sul, by means of the polymerase chain reaction. Rev Soc Bras Med Trop 42: 3, 303-308.

Dawit G, Girma Z, Simenew K. 2013. A review on biology: epidemiology and public health significance of Leishmaniasis.

J Bact Parasit 4: 2.

Delima H, Guglielmo Z, Rodríguez A, Convit J, Rodriguez N. 2002. Cotton rats (Sigmodon hispidus) and black rats (Rattus Rattus) as possible reservoirs of Leishmania sp in Lara (Venezuela). Mem Inst Oswaldo Cruz 97: 169-174.

Ezquerra JP. 2001. Las leishmaniasis: de la biología al control. Laboratorios Intervet SA, Salamanca, España, 200 p.

Feng AI, Chelsea GH. 2013. The secret life of the city rat: a review of the ecology of urban norway and black rats (Rattus norvegicus and Rattus rattus). Yrbans Ecosystems 17: 149-162.

Gómez HC et al. 2017. Leishmania infection in bats from a non-endemic region of Leishmaniasis in Brazil. Parasitology 144: 14, 1980-1986.

Gould IT et al. 2013. Leishmaniasis visceral en la Argentina.

Notificación y situación vectorial (2006-2012). Medicina (Buenos Aires) 73: 104-110.

Krayter L et al. 2014. Multilocus microsatellite typing reveals a genetic relationship but also genetic differences between Indian strains of Leishmania tropica causing cutaneous leishmaniasis and those causing visceral leishmaniasis. Parasites Vectors 7: 123.

Marchesin SR, Beguelini MR, Faria KC. 2008. Assessing genetic variability in bat species of Emballonuridae, Phyllostomidae, Vespertilionidae and Molossidae families (Chiroptera) by RFLP-PCR. Genet Mol Res 7: 1164-1178.

Medkour H et al. 2019. Potential animal reservoirs (dogs and bats) of human visceral leishmaniasis due to Leishmania infantum in French Guiana. PLoS Negl Trop Dis 13: 6, e0007456.

Montalvo CA, Fraga J, Lianet MC, García M, Fonseca L. 2012. Revisión diagnóstica de la leishmaniasis: observación microscópica del parásito a la detección del ADNLeishmaniasis. Rev Cubana Med Trop 64: 2, 108-131.

Oliveira FS, Pirmez C, Piresa MQ, Brazil RP, Pacheco, RS. 2005. PCR-based diagnosis for detection of Leishmania in skin and blood of rodents from an endemic area of cutaneous and visceral leishmaniasis in Brazil. Vet Parasit 129: 219-227.

OPS/OMS/PRY. 2018. Manual de diagnóstico y tratamiento

de Leishmaniasis. Centro de Inform & Conocim Minist Salud Pública y Bienestar Social, 92 p.

Parhizkari M, Motazedian M, Asqari Q, Mehrabani D. 2011. The PCR-based detection of Leishmania major in Mus musculus and other rodents caught in southern Iran: a guide to sample selection. Ann Trop Med Parasit 105: 4, 319-323.

Pennisi MG. 2015. Leishmaniosis de animales de compañía

en Europa: una actualización. Vet Parasitol 208: 1-2, 35-47.

Psaroulaki AM et al. 2010. Rats as indicators of the presence

and dispersal of six zoonotic microbial agents in Cyprus, an island ecosystem: a seroepidemiological study. Trans R Soc Trop Med Hyg 104: 11, 733-739.

Quinnell RJ, Courtenay O. 2009. Transmisión, reservorios y control de leishmaniasis visceral zoonótica. Parasitología 136: 14, 1915-1934.

Reithinger R, Dujardin JC. 2007. Molecular diagnosis of leishmaniasis current status and future applications. J Clin Microbiol 45: 21-25.

Roque AL, Cupolillo E, Marchevsky RS, Jansen AM. 2010. Thrichomys laurentius (Rodentia; Echimyidae) as a putative reservoir of Leishmania infantum and L. braziliensis: patterns of experimental infection. PLoS Negl Trop Dis 4 : e589.

Savani ES et al. 2010. Detection of Leishmania amazonensis

and Leishmania infantum chagasi in Brazilian bats. Vet Parasit 168: 5-10.

Shapiro JT et al. 2013. First record of Leishmania braziliensis

presence detected in bats, Mato Grosso do Sul, southwest Brazil. Acta Tropica 128: 171-174.

Svobodova M, Votýpka J, Nicolas L, Volf P. 2003. Leishmania

tropica in the black rat (Rattus rattus): persistence and transmission from asymptomatic host to sand fly vector Phlebotomus sergenti. Microbes & infection 5: 361-364.

Tavares TP et al. 2012. Natural infection of Leishmania (Viannia) braziliensis in Mus musculus captures in Mato Grosso, Brazil. Short comunications. Vector-Borne & Zoon Dis. Vol. 12: 1.

Uliana SR, Nelson K, Beberley SM, Camargo EP, Floeter LM. 1994. Discrimination amongs Leishmania by polymerase chain reaction and hibridization with small subunit ribosomal DNA derived oligonucleotides. J Euk. Microb 41: 4, 324.

Walker JA et al. 2004. Cuantitative PCR for ADN identification

base dan genome-specific interspersed repetitive elements. Genomics 83: 3, 518-527.

Published

2021-11-05

How to Cite

Ruiz, R. M., Alegre, E. A., & Ramirez, G. V. (2021). etection of Leishmania in medullary tissue of bats and rodents that inhabit an endemic area for canine leishmaniasis in Corrientes, Argentina. Revista Veterinaria, 32(1), 31–36. https://doi.org/10.30972/vet.3215630

Issue

Section

Trabajos de Investigación

Most read articles by the same author(s)

1 2 > >>