Nodules present in leguminous associated to pastures of Brachiaria sp in the Colombian Amazonia

Authors

  • J. C. Blanco Universidad de la Amazonia. Grupo de Investigación GIPSA.
  • A. Y. Páramo Universidad de la Amazonia. Grupo de Investigación GIPSA.
  • M. A. Montilla Universidad de la Amazonia. Semillero de Investigación SIEPSA.

DOI:

https://doi.org/10.30972/vet.3215642

Keywords:

legumes, nodulation, pastures, Brachiaria sp

Abstract

Twenty-three Brachiaria sp. pastures were studied, dedicated to dual purpose bovine production to identify species of legumes present and obtain root samples for extraction and nodule counting. The entire area corresponded to a total of 149.14 ha, where only 84.26 ha had the presence of the legumes Desmodium sp, Pueraria phaseoloides, Galactia striata, Arachis pintoi, Estilosantes sp, Mimosa púdica and Centrosema sp, whose coverage was 2.89% of that area. The species with the highest percentage of average coverage was A.pintoi with 5.36% followed by Stylosanthes sp with 5%, G.striata with 3.89% and P.phaseoloides with 2.62%. The rest were found in a range of less than 2% of the pasture area. A minimum of 7 nodules were found in the roots of Centrosema sp. and G.striata and a maximum number of 194 nodules in Desmodium sp. The amounts greater than 100 nodules per plant only corresponded to Desmodium sp, which reveals a satisfactory inoculation that is associated with its potential for nitrogen fixation mediated by symbiosis. The species with the lowest number of nodules was M.pudica found in 4.3% of the pastures evaluated, being the only one of the legumes sampled that is not consumed directly by bovines and develops as an unwanted species, indicating degradation levels of pastures.

Downloads

Download data is not yet available.

References

Acosta C. 2005. Los árboles fijadores de nitrógeno y sus mecanismos biológicos, p. 9: 23-27.

Alexander M. 1994. Introducción a la microbiología del suelo, 2da. ed., E.García Libros y Editoriales S.A., Mexico, D.F.

Arcila N. et al. 2000. Construcción de un territorio amazónico en el siglo XX. Edit. Tercer Mundo, Bogotá, D.C.

Avella DJ. 2007.Caracterización molecular de cepas nativas colombianas de Azotobacter sp mediante el análisis de restricción del DNA ribosomal 16s. Pontificia Universidad Javeriana.

B.Guasch V. 2011. Selección y caracterización de mutantes de Rhizobium tropici CIAT899 afectados en la producción de factores nod en condiciones de estrés salino. Universidad de Sevilla.

Bécquer CJ, Prévost, D. 2014. Revista Cubana de Ciencia Agrícola, 480 p, 301-307.

Bosman H et al. 1990. Composición botánica y nodulación de leguminosas en las pasturas nativas de la planicie costera del Golfo de México. Pasturas Tropicales 12: 1, p 2-8.

Carvalho LR et al. 2019. Nodulation and biological nitrogen fixation (BNF) in forage peanut (Arachis pintoi) cv. Belmonte, subjected to grazing regimes. Agriculture, Ecosystems & Environment, Elsevier, p. 96-106.

Castrillo RF. 2005. El muestreo de suelos, Edit. Ministerio de Agricultura y Ganadería, Costa Rica, Imprenta Nacional.

Farías RR, Sánchez MJ. 2005. Inoculación de leguminosas con Rhizobium. Edit. Mexico.

Franco LH, Calero QD, Durán CV. 2006. Manejo y utilización de forrajes tropicales multipropósito, 1ra. Ed., Centro Internacional de Agricultura Tropical, CIAT Edit. Univ. Nac.de Colombia, doi: 10.5216/ree.v16i1.20132.

Galindo MA. 2000.Síntesis de glutatión y homoglutatión en nódulos de leguminosas. Estación Experim.Aula Dei, Consejo Superior de Investigaciones Científicas.

Garg N, Renseigné N. 2009. Symbiotic nitrogen fixation in legume nodules: process and signaling: A review. Sustainable Agriculture, p. 519–531.

Gates CT. 1974. Nodule and plant development in Stylosanthes humilis HBK: symbiotic response to phosphorus and sulphur, Australian Journal of Botany, 22: 45-55.

Hernández JL, Cubillos JG, Milian PE. 2012. Aislamiento de cepas de Rhizobium sp asociados a dos leguminosas forrajeras en el Centro Biotecnológico del Caribe, Rev Colomb de Microbiol Trop 2: 2, 1-13.

Lopes ES et al. 1974. Seleção de estirpes de Rhizobium sp

para amendoim (Arachis hypogaea L.) e galáxia (Galactia striata). Bragantia, 33: 104-110.

Madigan M, Martinko J, Parker J. 2003. Brock Biologia de los Microorganismos, 10º Ed., Edit. P. Educacion, USA.

McMeniman N. 1997. Methods of estimating intake of

grazing animals. Juiz de Fora, 34.

Mendoza R, Espinoza A. 2017. Guía técnica para muestreo de suelos, Nicaragua.

Pommeresche R, Hansen S. 2017. Examining root nodule activity on legumes, Fertil Crop Technical Note. Available at: http://orgprints.org/31344/1/tn-wp5.pdf.

Prévost D, Antoun H. 2008. Root nodule bacteria and symbiotic nitrogen fixation (Chapter 31). In: Carter MR (ed.): Muestreo de suelo y métodos de análisis, 2da edición, Canadian Society of Soil Science, pp. 379.397.

Recinos CD, García GF. 2007.Aislamiento, evaluación y selección de cepas simbioticas nativas de Rhizobium sp en Phaseolus vulgaris de suelos agrícolas de El Salvador. Tesis, Universidad de El Salvador.

Silva K et al. 2017.Isolamento e diversidades de bactérias fixadoras de nitrógeno obtidas de diferentes espécies de estilosantes no cerrado de roraima. Documentos Boa Vista: 62.

Somasegaran P, Hoben HJ. 1985. Handbook for Rhizobia, Springer, New York, doi: 10.1007/978-1-4613-8375-8.

Thomas RJ. 1992. The role of the legume in the nitrogen cycle of productive and sustainable pastures. Grass & Forage Science 47: 2, 133-142.

Universidad Nacional de Córdoba. 2015. Guía de actividades prácticas de micro- biología agrícola, Facultad de Ciencias Agropecuarias, Córdoba, Colombia.

Vergueiro DC. 2009. Nodulação de Mimosa pudica l por beta-rizóbio isolados de diferentes ecossistemas no Brasil. Universidade Federal Rural, Rio de Janeiro.

Wang S. et al. 2018. Nitrogen fixation reaction derived from nanostructured catalytic materials, advanced functional materials. Wiley-VCH Verlag 28: 50, p. 1-26.

Wei X, Reich PB, Hobbie SE. 2019. Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO2’. Global Change Biology, Blackwell Publishing Ltd, doi: 10.1111/gcb.14636.

Xu R et al. 2019. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty, Global Change Biology 25: 1, 314-326.

Xu Z, Zhou GS. 2006. Nitrogen metabolism and photosynthesis in Leymus chinensis in response to long-term soil drought. Journal Plant Growth Regul 25: 252-266.

Zhao J. et al. 2014. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant Soil 385: 273-286.

Published

2021-11-05

How to Cite

Blanco, J. C., Páramo, A. Y., & Montilla, M. A. (2021). Nodules present in leguminous associated to pastures of Brachiaria sp in the Colombian Amazonia. Revista Veterinaria, 32(1), 89–94. https://doi.org/10.30972/vet.3215642

Issue

Section

Trabajos de Investigación