Effect of high-fat buffalo dairy diets with different fatty acid composition on hepatic fatty degeneration in C57BL/6J mice
DOI:
https://doi.org/10.30972/vet.3427040Keywords:
steatohepatitis, trans fats, ruminant, dairy fatAbstract
This work compared the effects of two diets high in milk fat of buffaloes with different fatty acid profiles on hepatic fatty degeneration in mice. Male C57BL/6J mice were fed for 154 days with balanced food (control) and two foods rich in milk fat (≈20%): one with a standard profile of fatty acids obtained from buffaloes fed with natural grass (GLP) and another reduced in saturated fats (-31%), rich in rumenic acid (+212,5%) and trans fats (+434,2%, predominantly vaccenic acid) (GLE), obtained from buffaloes fed with natural grass + lipid supplementation. Nutritional parameters, weight gain, cholesterolemia, serum transaminases, liver fat content, and liver histopathology were evaluated. Compared with the control group, GLP and GLE mice were obese, had increased serum ALT, and developed severe liver fatty degeneration (>66% affected parenchyma) with lobular inflammation and hepatocellular ballooning. There weren`t differences between the GLP and GLE groups in food and calorie intake, weight gain, markers of liver damage, cholesterolemia, hepatic lipid content or in liver lesions. The level of fat in the diet and not the type of milk fat was responsible for the observed changes. In conclusion, both high-fat buffalo dairy foods had a similar effect and neither attenuated liver fat degeneration of C57BL/6J mice.
Downloads
References
Anadón A, Martínez-Larrañaga MR, Martínez MA, Ares I, Ramos E, Gómez-Cortés P, Juárez M, De la Fuente MA. Acute oral safety of dairy fat rich in trans-10 C18:1 versus vaccenic plus conjugated linoleic acid in rats. Food Chem. Tox. 2010; 48: 591-598.
Basak S, Duttaroy AK. Conjugated Linoleic Acid and Its Beneficial Effects in Obesity, Cardiovascular Disease, and Cancer. Nutrients 2020, 12: 1913.
Benoit B, Plaisancie P, Geloën A, Estienne M, Debard C, Meugnier E, Loizon E, Daira P, Bodennec J, Cousin O, Vidal H, Laugerette F, Michalski MC. Pasture vs. standard dairy cream in high-fat diet-fed mice: improved metabolic outcomes and stronger intestinal barrier. Br. J. Nutr. 2014; 112: 520-535.
Bertola A. Rodent models of fatty liver diseases. Liver Res. 2018; 2: 3-13.
Brito Medeiros L, Alves SPA, Bessa RJB, Barbosa Soares JK, Meireles Costa CN, Souza Aquino J, Guerra GCB, Fernandes de Souza Araújo D, Tavares Toscano L, Silva AS, Alves AF, Pereira Lemos ML, Araujo WJ, Nunes de Medeiros A, Oliveira CJB, Queiroga RCRE. Ruminant fat intake improves gut microbiota, serum inflammatory parameter and fatty acid profile in tissues of Wistar rats. Sci. Rep. 2021; 11: 18963. Disponible en: https://doi.org/10.1038/s41598-021-98248-6
Gebauer SK, Destaillats F, Dionisi F, Krauss RM, Baer DJ. Vaccenic acid and trans fatty acid isomers from partially hydrogenated oil both adversely affect LDL cholesterol: double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2015; 102: 1339-1346.
Gerstner C, Saín J, Lavandera J, González M, Bernal C. Functional milk fat enriched in conjugated linoleic acid prevented liver lipid accumulation induced by a high-fat diet in male rats. Food Funct. 2021; 12: 5051-5065.
Hodson L, Rosqvist F, Parry SA. The influence of dietary fatty acids on liver fat content and metabolism. Proceedings of the Nutrition Society 2020; 79: 30-41.
Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, Hirose H, Ito M, Ishihara A, Iwaasa H, Kanatani A. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol. Res. 2007; 37: 50-57.
Jacome-Sosa MM, Lu J, Wang Y, Ruth MR, Wright DC, Reaney MJ, Shen J, Field CJ, Vine DF, Proctor SD. Increased hypolipidemic benefits of cis-9, trans-11 conjugated linoleic acid in combination with trans-11 vaccenic acid in a rodent model of the metabolic syndrome, the JCR:LA-cp rat. Nutr. & Metab. 2010; 7: 60.
Jacome-Sosa MM, Borthwick F, Mangat R, Uwiera R, Reaney MJ, Shen J, Quiroga AD, Jacobs RL, Lehner R, Proctor SD. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in rat model of NAFLD and metabolic syndrome. J. Nutr. Biochem. 2014; 25: 692-701.
Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-1321.
Krogager TP, Nielsen LV, Kahveci D, Dyrlund TF, Scavenius C, Sanggaard KW, Enghild JJ. Hepatocytes respond differently to major dietary trans fatty acid isomers, elaidic acid and trans-vaccenic acid. Proteome Science 2015; 13: 31.
Lottenberg AM, da Silva Afonso M, Ferrari Lavrador MS, Marcondes Machado R, Nakandakare ER. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012, 23: 1027-1040.
Motard-Bélanger A, Charest A, Grenier G, Paquin P, Chouinard Y, Lemieux S, Couture P, Lamarche B. Study of the effect of trans fatty acids from ruminants on blood lipids and other risk factors for cardiovascular diseases. Am. J. Clin. Nutr. 2008; 87: 593-599.
Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of nonalcoholic steatohepatitis. Prog. Lipid Res. 2013; 52: 175-91.
Musso G, Cassader M, Paschetta E, Gambino R. Bioactive lipid species and lipid metabolic pathways in NASH progression and resolution. Gastroenterology 2018; 155: 282-302.
Obara N, Fukushima K, Ueno Y, Wakui Y, Kimura O, Tamai K, Kakazu E, Inoue J, Kondo Y, Ogawa N, Sato K, Tsuduki T, Ishida K, Shimosegawa T. Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J. Hepatol. 2010; 53: 326-334.
Oteng AB, Loregger A, van Weeghel M, Zelcer N, Kersten S. Industrial Trans Fatty Acids Stimulate SREBP2-Mediated Cholesterogenesis and Promote Non-Alcoholic Fatty Liver Disease. Mol. Nutr. Food Res. 2019; 63: 1900385.
Parthasarath G, Revelo X, Malhi H. Pathogenesis of Nonalcoholic Steatohepatitis: An Overview. Hepatology Communications 2020; 4: 478-492.
Patiño EM, Lértora WJ, Villordo GI, Valenzuela KM, Sánchez Negrette M. Perfil de ácidos grasos en leche de búfalas alimentadas con pastura natural y suplementadas con aceites de girasol y pescado. Rev. Vet. 2017; 28: 19-26.
Rada P, González-Rodríguez A, García-Monzón C, Valverde AM. Understanding lipotoxicity in NAFLD pathogenesis:is CD36 a key driver? Cell Death and Disease 2020; 11: 802-817.
Rice BH, Kraft J, Destaillats F, Bauman DE, Lock AL. Ruminant-produced trans-fatty acids raise plasma total and small HDL particles concentrations in male Hartley guinea pigs. J. Nutr. 2010; 140: 2173-2179.
Sattar N, Forrest E, Preiss D. Non-alcoholic fatty liver diseases. BMJ 2014; 349: g4596.
Speakman JR. Use of high-fat diets to study rodent obesity as a model of human obesity. Int. J. Obes. 2019; 43: 1491-1492.
Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet induce type II diabetes in C57BL/6J mice. Diabetes, 1988; 37: 1163-67.
Tabuchi M, Tomioka K, Hiramatsu M, Itoshima T, Tsukamoto I. Increase of the plasma trans-fatty acid level in middle-aged japonese men with non-alcoholic fatty liver disease. J. Jpn. Soc. Nutr. Food Sci. 2014; 67: 137-143.
Takahashi Y, Fukusato T. Histopathology of nonalcoholic fatty liver disease/ nonalcoholic steatohepatitis. World J. Gastroenterol. 2014; 42: 15539-15548.
Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol. Gastrointest. Liver Physiol. 2008; 295: 987-995.
Tilg H, Adolph TE, Moschen AR. Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited After a Decade. Hepatology 2021; 73: 833-842.
Vahmani P, Meadus WJ, Duff P, Rolland DC, Dugan MER. a. Comparing the lipogenic and cholesterolgenic effects of individual trans-18:1 isomers in liver cells. Eur. J. Lipid Sci. Technol. 2016; 119 (3). https://doi.org/10.1002/ejlt.201600162.
Vahmani P, Meadus JW, Silva MLP, Mitchell AD, Mapiye C, Duff P, Rolland DC, Dugan MER. b. A trans10-18:1 enriched fraction from beef fed a barley grain-based diet induces lipogenic gene expression and reduces viability of HepG2 cells. Biochem. Biophys. Rep. 2016; 7: 84-90.
Wang Y, Jacome-Sosa MM, Ruth MR, Goruk SD, Reaney MJ, Glimm DR, Wright DC, Vine DF, Field CJ, Proctor SD. Trans-11 Vaccenic Acid Reduces Hepatic Lipogenesis and Chylomicron Secretion in JCR:LA-cp Rats. J. Nutr. 2009; 139: 2049-2054.
Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver disease and hepatocellular carcinoma. JHEP Reports 2021; 3: 100305. Disponible en: https://doi.org/10.1016/j.jhepr.2021.100305.
Downloads
Published
How to Cite
Issue
Section
License
LicenseRevista Veterinaria (Rev. Vet.) maintains a commitment to the policies of Open Access to scientific information, as it considers that both scientific publications as well as research investigations funded by public resources should circulate freely without restrictions. Revista Veterinaria (Rev. Vet.) ratifies the Open Access model in which scientific publications are made freely available at no cost online.