Characterization of microplastics in Thaisella chocolata from a southern Peruvian port

Authors

  • C. Jaén-Rodriguez Universidad Científica del Sur. Escuela de Ingeniería Ambiental. Laboratorio de Ingeniería Ambiental. Grupo de Investigación Restauración ecológica y calidad ambiental https://orcid.org/0000-0003-1790-9918
  • N. Luna-Pacompea Universidad Científica del Sur. Escuela de Ingeniería Ambiental. Laboratorio de Ingeniería Ambiental. Grupo de Investigación Restauración ecológica y calidad ambiental https://orcid.org/0000-0003-2821-1179
  • F. Juárez-Laguna Universidad Científica del Sur. Escuela de Ingeniería Ambiental. Laboratorio de Ingeniería Ambiental. Grupo de Investigación Restauración ecológica y calidad ambiental https://orcid.org/0000-0003-0585-7145
  • L. Alvariño Laboratorio de Ecología y Biodiversidad Animal, Museo de Historia Natural de la Facultad de Ciencias Naturales y Matemática, Grupo de Investigación de Sostenibilidad Ambiental, Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal https://orcid.org/0000-0003-1544-511X
  • J. Iannacone Laboratorio de Ecología y Biodiversidad Animal, Museo de Historia Natural de la Facultad de Ciencias Naturales y Matemática, Grupo de Investigación de Sostenibilidad Ambiental, Escuela Universitaria de Posgrado, Universidad Nacional Federico Villarreal https://orcid.org/0000-0003-3699-4732

DOI:

https://doi.org/10.30972/vet.3527868

Keywords:

Gastropod, Marine pollution, Marine litter

Abstract

The marine coast is affected by significant amounts of primary and secondary microplastics (MPs). In the Port of Matarani, located in the department of Arequipa, southern Peru, activities such as fishing and shellfish harvesting are carried out. The objective of this study was to characterize the MPs in the marine snail Thaisella chocolata. A total of 150 T. chocolata individuals were collected from two zones. Zone A is located 100 meters from the pier at the Port of Matarani, where artisanal fishing boats are docked, and Zone B is a sea lion colony located approximately 2 kilometers from the pier. Collections were carried out during the winter and spring seasons of 2021. Snail tissue digestion was performed using 10% KOH, concentrated NaCl was used for MPs separation, and the samples were filtered. The MPs found were then identified and measured through microscopy, and their composition was determined by Raman microscopy. MPs were recorded in 100% of the collected snails. The most abundant forms were filaments > fibers > fragments. The dominant color was blue (53.94%), and the most frequent size range was 0.0825 to 0.1609 mm (45.9%). The highest abundance of MPs was found in winter and in female snails from Zone B (5.74 and 2.74 MPs/ind., respectively). No direct relationship was found between shell length and tissue weight of T. chocolata in relation to the amount of MP/ind. Raman microscopy identified the presence of PPO (poly(2,6-dimethyl-1,4-phenylene oxide)), PPSU (polyphenylsulfone), PDMS (poly(dimethylsiloxane-co-methylphenylsiloxane)), PBT (poly(butylene terephthalate)), PVBP (poly(4-vinylbiphenyl)), and PS (polystyrene). It is concluded that based on sex and season, the snail T. chocolata can be used as a bioindicator of MPs pollution, characterized by their shape, color, size, and chemical composition in the Peruvian coastal marine ecosystem.

Downloads

Download data is not yet available.

References

Ariati R, Sales F, Souza A, Lima RA, Ribeiro J. Polydimethylsiloxane composites characterization and its applications: a review. Polymers. 2021; 13: 4258.

Buonfiglio G, Lovatelli A. Guía práctica del buceo seguro con hookah - Buceo para pepino de mar y otros organismos marinos. Roma, FAO. 2023.

Browne M, Galloway T, Thompson R. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 2010; 44: 3404-3409.

Canchari F, Iannacone J. Microplásticos en sedimentos de canales de riego en el centro poblado de Madeán, Distrito de Madeán, Provincia de Yauyos, región Lima, Perú. Biologist (Lima). 2022; 20: 85-92.

Castro-García S, Barrera-Leiva AM, González-Evaristo AM, Pinot-Gómez AL, Vargas-Chan JR, Sierra-Lemus I, Huchin-Mian JP. Contaminación por microplásticos en ecosistemas acuáticos. Ciencia (Méx.). 2021; 10: 28-35.

Cisneros P, Montero P, Guevara M. Registro de fragmentos y fibras de plástico en sedimentos marinos, Tumbes, Perú. Inf. Inst. Mar Perú 2021; 48: 478-483.

De-la-Torre GE, Mendoza-Castilla LL, Laura RP. Microplastic contamination in market bivalve Argopecten purpuratus from Lima, Peru. Manglar 2019; 16: 85-89.

Expósito N, Rovira J, Sierra J, Gimenez G, Domingo JL, Schuhmacher M. Levels of microplastics and their characteristics in molluscs from North-West Mediterranean sea: Human intake. Mar. Pollut. Bull. 2022; 181: 113843.

FAOSTAT. Consumo de comida marina (kg/percápita/año) en Perú desde 1993 hasta 2013. 2021. Disponible en: http://www.fao.org/faostat/en/#data/CL/visualize Último acceso 15 de enero del 2024.

Fernández EJ. Nuevos retos y perspectivas del puerto de Matarani en el contexto regional en el marco de la globalización. Espacio y Desarrollo. 2013; 25: 157-171.

Ganoza F, Ramirez A, Gonzales R, Barreto J. Evaluación de Thaisella chocolata “caracol negro” y Cheilodactylus variegatus “pintadilla” en las islas del grupo Huaura, Región Lima, diciembre 2018. Inf. Inst. Mar Perú. 2021; 48: 146-165.

Godoy-Balcarcel B, Ponciano-Nuñez M, Alpuche-Palma A, Vera-Quiñones F, Mendiola-Campuzano J. Identificación de microplástico en el contenido gastrointestinal de peces comerciales. Caso: Lago Petén Itzá, Guatemala. ReIbCi 2021; 8: 124-134.

Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY. A global perspective on microplastics. J. Geophys. Res. (Oceans) 2020; 125: e2018JC014719.

Haque F, Fan C. Fate of microplastics under the influence of climate change. iScience. 2023; 26: 107649.

Iannacone J, Principe F, Minaya D, Panduro G, Carhuapoma M, Alvariño L. Microplásticos en peces marinos de importancia económica en Lima, Perú Microplastics in marine fishes of economic importance in Lima, Peru. Rev. investig. vet. Perú 2021; 32: 1-15.

Iannacone J, Principe F, Alvariño L, Minaya D, Panduro G, Ayala Y. Microplásticos en el <> Romaleon setosum (Molina, 1782) (Cancridae) del Perú. Rev. investig. vet. Perú 2022; 33: e22161.

Karkanorachaki K, Syranidou E, Kalogerakis N. Sinking characteristics of microplastics in the marine environment. Sci. Total Environ. 2021; 793: 148526.

Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, Shruti VC. Review of current trends, advances and analytical challenges for microplastics contamination in Latin America. Environ. Pollut. 2020; 267: 115463.

Li J, Zhang K, Zhang H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018; 237: 460-467.

Luna-Pacompea N, Juarez-Laguna F, Jaen-Rodriguez C, Alvariño L, Iannacone J. Metales pesados e imposex en Thaisella chocolata (Gasteropoda: Muricidae) en Matarani, Arequipa, Perú. Rev. investig. vet. Perú. 2022; 33: e23793.

Lusher A, Hernandez-Milian G. Microplastic extraction form marine vertebrate digestive tracts, regurgitates and scats: A protocol for researchers from all experience levels. Bio-Protoc. 2018; 8: 1-12.

Naji A, Nuri M, Vethaak AD. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 2018; 235: 113-120.

Santillán L, Saldaña-Serrano M, De-la-Torre G. First record of microplastics in the endangered marine otter (Lontra felina). Mastozool. Neotrop. 2020; 27: 211-215.

Schwabl P, Köppel S, Königshofer P, Bucsics T, Tauner M, Reiberger T, Liebmann B. Detection of various microplastics in human stool. Ann. Intern. Med. 2019; 171: 453-457.

SINIA. Gestión integral de los residuos sólidos en Arequipa. 2020. Disponible en: https://sinia.minam.gob.pe/sites/default/files/archivos/public/docs/dossier_arequipa_jun20.pdf. Último acceso 22 de enero de 2024.

Torres-Zevallos U, Arenas-Valeriano AD, Alvariño L, Iannacone J. Microplásticos e imposex en el caracol marino Thaisella chocolata procedente de la costa central marina del Perú. Rev Vet. 2023; 34: 25-32.

Wang W, Wang J. 2018. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. Trends Anal. Chem. 2018; 108: 195-202.

Wang S, Zheng L, Shen M, Zhang L, Wu Y, Li G, Guo C, Hu C, Zhang M, Sui Y, Dong XLL. Habitual feeding patterns impact polystyrene microplastic abundance and potential toxicity in edible benthic mollusks. Sci. Total Environ. 2023; 866: 161341.

Weber A, von Randow M, Voigt AL, Au M, von der Fischer E, Meermann B, Wagner M. Ingestion and toxicity of microplastics in the freshwater gastropod Lymnaea stagnalis: No microplastic-induced effects alone or in combination with copper. Chemosphere 2020; 263: 128040.

Weis JS. Aquatic microplastic research A critique and suggestions for the future. Water 2020; 12: 1475.

Wirnkorn VA, Ebere EC, Ngozi VE. Microplastics, an emerging concern: A review of analytical techniques for detecting and quantifying microplastics. Anal. Methods Environ. Chem. J. 2019; 2: 13-30.

Yang J, Monnot M, Sun Y Asia L Wong-Wah-Chung P, Doumenq P, Mouli P. Microplastics in different water samples (seawater, freshwater, and wastewater): Removal efficiency of membrane treatment processes. Water Res. 2023; 232: 119673.

Xu T, Wu D, Wu L. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)—A versatile starting polymer for proton conductive membranes (PCMs). Prog. Polym. Sci. 2008; 33: 894-915.

Published

2024-11-01

How to Cite

Jaén-Rodriguez, C., Luna-Pacompea, N., Juárez-Laguna, F., Alvariño, L., & Iannacone, J. (2024). Characterization of microplastics in Thaisella chocolata from a southern Peruvian port. Revista Veterinaria, 35(2), 86–92. https://doi.org/10.30972/vet.3527868

Issue

Section

Artículos

Most read articles by the same author(s)